Menu Close

let-put-1-i-3-simlify-A-n-k-0-n-k-




Question Number 29164 by abdo imad last updated on 04/Feb/18
let put α= 1+i(√3)     simlify  A_n = Σ_(k=0) ^n   α^k    .
letputα=1+i3simlifyAn=k=0nαk.
Commented by abdo imad last updated on 06/Feb/18
e have α≠1 so A_n = ((1−α^(n+1) )/(1−α))=((1−(1+i(√3))^(n+1) )/(−i(√3)))    =(i/( (√3)))(1−(1+i(√3))^(n+1)  but we have  1+i(√3)=2( (1/2) +i((√3)/2))=2 e^(i(π/3))  ⇒(1+i(√3))^n = 2^n  e^(i((nπ)/3))   ⇒  A_n =(i/( (√3)))( 1−2^n e^(i((nπ)/3)) )=(i/( (√3)))(1−2^n cos(((nπ)/3))−i2^n sin(((nπ)/3)))  =(2^n /( (√3)))sin(((nπ)/3)) +(i/( (√3)))(1−2^n  cos(((nπ)/3)).
ehaveα1soAn=1αn+11α=1(1+i3)n+1i3=i3(1(1+i3)n+1butwehave1+i3=2(12+i32)=2eiπ3(1+i3)n=2neinπ3An=i3(12neinπ3)=i3(12ncos(nπ3)i2nsin(nπ3))=2n3sin(nπ3)+i3(12ncos(nπ3).

Leave a Reply

Your email address will not be published. Required fields are marked *