Menu Close

let-put-f-t-0-e-ax-e-bx-x-2-e-tx-2-dx-with-t-0-and-a-gt-0-and-b-gt-0-find-a-integral-form-of-f-t-




Question Number 27974 by abdo imad last updated on 18/Jan/18
let put f(t)=∫_0 ^∞   ((e^(−ax)  − e^(−bx) )/x^2 ) e^(−tx^2 )  dx  with t≥0  and a>0 and b>0  find a integral form of f(t).
letputf(t)=0eaxebxx2etx2dxwitht0anda>0andb>0findaintegralformoff(t).
Commented by abdo imad last updated on 20/Jan/18
after verifying that f is derivable on ]0,+∞[ we have   f^, (t)= −∫_0 ^∞  ( e^(−ax)  −e^(−bx) )e^(−tx^2 ) dx  =∫_0 ^∞  e^(−tx^2 −bx) dx −∫_0 ^∞  e^(−tx^2 −ax) dx   but  ∫_0 ^∞  e^(−tx^2 −ax) dx = ∫_0 ^∞   e^(−(  ((√t)x)^2  +2(a/(2(√t)))((√t)x) + (a^2 /(4t)) −(a^2 /(4t)))) dx  =  e^(a^2 /(4t))   ∫_0 ^∞   e^(−((√t)x +(a/( (√t))))^2 ) dx     the ch. (√t)x  +(a/( (√t)))=u give  ∫_0 ^∞   e^(−tx^2 −ax) dx = e^(a^2 /(4t))   ∫_(a/( (√t))) ^(+∞)   e^(−u^2 )  (du/( (√t)))  = (1/( (√t))) e^(a^2 /(4t))  (  ∫_0 ^∞  e^(−u^2 ) du − ∫_0 ^(a/( (√t)))   e^(−u^2 ) du)  = (1/( (√t))) e^(a^2 /(4t))   (    ((√π)/2)  − ∫_0 ^(a/( (√t)))   e^(−u^2 ) du) and by the same manner  we get  ∫_0 ^∞   e^(−tx^2 −bx) dx = (1/( (√t))) e^(b^2 /(4t)) (  ((√π)/2) − ∫_0 ^(b/( (√t))) e^(−u^2 ) du)  f^′ (t)= ((√π_ )/(2(√t)))(  e^(b^2 /(4t))  − e^(a^2 /(4t)) ) + ∫_0 ^(a/( (√t)))   e^(−u^2 ) du  −∫_0 ^(b/( (√t)))   e^(−u^2 ) du  = ((√π)/(2(√t))) (  e^(b^2 /(4t))   − e^(a^2 /(4t)) ) −∫_(a/( (√t))) ^(b/( (√t)))   e^(−u^2 )  du =  ψ(t) ⇒  f(t)= ∫_. ^t  ψ(u)du  +λ  .
afterverifyingthatfisderivableon]0,+[wehavef,(t)=0(eaxebx)etx2dx=0etx2bxdx0etx2axdxbut0etx2axdx=0e((tx)2+2a2t(tx)+a24ta24t)dx=ea24t0e(tx+at)2dxthech.tx+at=ugive0etx2axdx=ea24tat+eu2dut=1tea24t(0eu2du0ateu2du)=1tea24t(π20ateu2du)andbythesamemannerweget0etx2bxdx=1teb24t(π20bteu2du)f(t)=π2t(eb24tea24t)+0ateu2du0bteu2du=π2t(eb24tea24t)atbteu2du=ψ(t)f(t)=.tψ(u)du+λ.

Leave a Reply

Your email address will not be published. Required fields are marked *