Menu Close

let-put-F-x-0-e-tx-sint-t-dt-with-x-0-we-accept-that-F-is-class-C-1-on-0-calculate-F-x-and-find-F-x-then-find-the-value-of-0-sint-t-dt-




Question Number 26559 by abdo imad last updated on 26/Dec/17
let put F(x)= ∫_0 ^∞  e^(−tx)  ((sint)/t) dt   with  x≥0  we accept that F is class C^1  on [0,∝[  calculate  (∂F/∂x)  and find F(x)  then  find the value of  ∫_0 ^∞  ((sint)/t) dt
letputF(x)=0etxsinttdtwithx0weacceptthatFisclassC1on[0,[calculateFxandfindF(x)thenfindthevalueof0sinttdt
Commented by prakash jain last updated on 27/Dec/17
(dF/dx)=∫_0 ^∞ (∂/∂x)(e^(−tx) ((sin t)/t))dt  =−∫_0 ^∞ e^(−tx) sin tdt  =[((e^(−tx) (xsin t+cos t))/(x^2 +1))]_(t=0) ^(t=∞)   =−(1/(x^2 +1))  F(x)=−tan^(−1) x+C  F(∞)=0  ⇒C=(π/2)  F(x)=−tan^(−1) x+(π/2)  F(0)=∫_0 ^∞ ((sin t)/t)dt=(π/2)
dFdx=0x(etxsintt)dt=0etxsintdt=[etx(xsint+cost)x2+1]t=0t==1x2+1F(x)=tan1x+CF()=0C=π2F(x)=tan1x+π2F(0)=0sinttdt=π2

Leave a Reply

Your email address will not be published. Required fields are marked *