Menu Close

let-put-s-n-k-0-k-n-2k-1-k-1-k-n-k-find-lim-n-gt-s-n-




Question Number 26761 by abdo imad last updated on 29/Dec/17
let put  s_n = ((Σ_(k=0) ^(k=n) (2k+1))/(Σ_(k=1) ^(k=n)  k))  find lim_(n−>∝) s_n
letputsn=k=0k=n(2k+1)k=1k=nkfindlimn>∝sn
Answered by prakash jain last updated on 29/Dec/17
 s_n = ((Σ_(k=0) ^(k=n) (2k+1))/(Σ_(k=1) ^(k=n)  k))=(((n+1)^2 )/(n(n+1)/2))=((2(n+1))/n)  lim_(n→∞) ((2(n+1))/n)=2
sn=k=0k=n(2k+1)k=1k=nk=(n+1)2n(n+1)/2=2(n+1)nlimn2(n+1)n=2
Commented by abdo imad last updated on 29/Dec/17
the sequence v_n  =2n+1 is arithmetic so  Σ_(k=0) ^(k=n) (2k+1)=v_0  +v_1 +...v_n   = ((n+1)/2)(v_0  +v_n  )= ((n+1)/2)(1+2n+1)  =(n+1)^2    ?and for the same raison   Σ_(k=1) ^(k=n) k = ((n(n+1))/2)  lim_(n−>∝)  s_n   = lim_(n−>∝)  2 (((n+1)^2 )/(n^2 +n))  = 2
thesequencevn=2n+1isarithmeticsok=0k=n(2k+1)=v0+v1+vn=n+12(v0+vn)=n+12(1+2n+1)=(n+1)2?andforthesameraisonk=1k=nk=n(n+1)2limn>∝sn=limn>∝2(n+1)2n2+n=2
Commented by prakash jain last updated on 29/Dec/17
Thanks. I corrected.  Earlier  Σ_(i=0) ^n (2i+1)=n^2  (it should have been  (n+1)^2 .
Thanks.Icorrected.Earlierni=0(2i+1)=n2(itshouldhavebeen(n+1)2.

Leave a Reply

Your email address will not be published. Required fields are marked *