Menu Close

let-put-u-n-k-1-n-k-k-1-prove-that-u-n-n-1-1-2-study-the-convergence-of-n-1-1-u-n-




Question Number 32273 by abdo imad last updated on 22/Mar/18
let put u_n =Σ_(k=1) ^n  k(k!)  1) prove that u_n =(n+1)! −1  2) study the convergence of Σ_(n=1) ^∞   (1/u_n ) .
letputun=k=1nk(k!)1)provethatun=(n+1)!12)studytheconvergenceofn=11un.
Commented by abdo imad last updated on 25/Mar/18
1) let prove this relation by recurrence  p(1) u_1 = 2!−1=1×(1!) p(1) is true let supose  u_n =(n+1)!−1 ⇒u_(n+1) =Σ_(k=1) ^(n+1)  k(k!) =Σ_(k=1) ^n k(k!) +(n+1)(n+1)!  =(n+1)!−1 +(n+1)(n+1)!=(n+1)!(n+1+1) −1  =(n+2)(n+1)! −1 =(n+2)! −1 the implication  p(n)⇒p(n+1) is true .  2)we have  Σ_(n=1) ^∞  (1/u_n ) = Σ_(n=1) ^∞   (1/((n+1)! −1)) but for n→∞    (1/((n+1)! −1)) ∼  (1/((n+1)!)) and  Σ (1/((n+1)!)) is convergent so  Σ(1/u_n ) is covergent .
1)letprovethisrelationbyrecurrencep(1)u1=2!1=1×(1!)p(1)istrueletsuposeun=(n+1)!1un+1=k=1n+1k(k!)=k=1nk(k!)+(n+1)(n+1)!=(n+1)!1+(n+1)(n+1)!=(n+1)!(n+1+1)1=(n+2)(n+1)!1=(n+2)!1theimplicationp(n)p(n+1)istrue.2)wehaven=11un=n=11(n+1)!1butforn1(n+1)!11(n+1)!andΣ1(n+1)!isconvergentsoΣ1uniscovergent.
Answered by Tinkutara last updated on 23/Mar/18
u_n =Σ_(k=1) ^n (k+1−1)(k!)  u_n =Σ_(k=1) ^n [(k+1)!−k!]  It telescopes and becomes  u_n =(n+1)!−1
un=nk=1(k+11)(k!)un=nk=1[(k+1)!k!]Ittelescopesandbecomesun=(n+1)!1

Leave a Reply

Your email address will not be published. Required fields are marked *