Menu Close

let-put-u-n-k-1-n-k-k-1-prove-that-u-n-n-1-1-2-study-the-convergence-of-n-1-1-u-n-




Question Number 32273 by abdo imad last updated on 22/Mar/18
let put u_n =Σ_(k=1) ^n  k(k!)  1) prove that u_n =(n+1)! −1  2) study the convergence of Σ_(n=1) ^∞   (1/u_n ) .
$${let}\:{put}\:{u}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:{k}\left({k}!\right) \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{u}_{{n}} =\left({n}+\mathrm{1}\right)!\:−\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{study}\:{the}\:{convergence}\:{of}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{u}_{{n}} }\:. \\ $$
Commented by abdo imad last updated on 25/Mar/18
1) let prove this relation by recurrence  p(1) u_1 = 2!−1=1×(1!) p(1) is true let supose  u_n =(n+1)!−1 ⇒u_(n+1) =Σ_(k=1) ^(n+1)  k(k!) =Σ_(k=1) ^n k(k!) +(n+1)(n+1)!  =(n+1)!−1 +(n+1)(n+1)!=(n+1)!(n+1+1) −1  =(n+2)(n+1)! −1 =(n+2)! −1 the implication  p(n)⇒p(n+1) is true .  2)we have  Σ_(n=1) ^∞  (1/u_n ) = Σ_(n=1) ^∞   (1/((n+1)! −1)) but for n→∞    (1/((n+1)! −1)) ∼  (1/((n+1)!)) and  Σ (1/((n+1)!)) is convergent so  Σ(1/u_n ) is covergent .
$$\left.\mathrm{1}\right)\:{let}\:{prove}\:{this}\:{relation}\:{by}\:{recurrence} \\ $$$${p}\left(\mathrm{1}\right)\:{u}_{\mathrm{1}} =\:\mathrm{2}!−\mathrm{1}=\mathrm{1}×\left(\mathrm{1}!\right)\:{p}\left(\mathrm{1}\right)\:{is}\:{true}\:{let}\:{supose} \\ $$$${u}_{{n}} =\left({n}+\mathrm{1}\right)!−\mathrm{1}\:\Rightarrow{u}_{{n}+\mathrm{1}} =\sum_{{k}=\mathrm{1}} ^{{n}+\mathrm{1}} \:{k}\left({k}!\right)\:=\sum_{{k}=\mathrm{1}} ^{{n}} {k}\left({k}!\right)\:+\left({n}+\mathrm{1}\right)\left({n}+\mathrm{1}\right)! \\ $$$$=\left({n}+\mathrm{1}\right)!−\mathrm{1}\:+\left({n}+\mathrm{1}\right)\left({n}+\mathrm{1}\right)!=\left({n}+\mathrm{1}\right)!\left({n}+\mathrm{1}+\mathrm{1}\right)\:−\mathrm{1} \\ $$$$=\left({n}+\mathrm{2}\right)\left({n}+\mathrm{1}\right)!\:−\mathrm{1}\:=\left({n}+\mathrm{2}\right)!\:−\mathrm{1}\:{the}\:{implication} \\ $$$${p}\left({n}\right)\Rightarrow{p}\left({n}+\mathrm{1}\right)\:{is}\:{true}\:. \\ $$$$\left.\mathrm{2}\right){we}\:{have}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{u}_{{n}} }\:=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!\:−\mathrm{1}}\:{but}\:{for}\:{n}\rightarrow\infty \\ $$$$\:\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!\:−\mathrm{1}}\:\sim\:\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!}\:{and}\:\:\Sigma\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!}\:{is}\:{convergent}\:{so} \\ $$$$\Sigma\frac{\mathrm{1}}{{u}_{{n}} }\:{is}\:{covergent}\:. \\ $$
Answered by Tinkutara last updated on 23/Mar/18
u_n =Σ_(k=1) ^n (k+1−1)(k!)  u_n =Σ_(k=1) ^n [(k+1)!−k!]  It telescopes and becomes  u_n =(n+1)!−1
$${u}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left({k}+\mathrm{1}−\mathrm{1}\right)\left({k}!\right) \\ $$$${u}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left[\left({k}+\mathrm{1}\right)!−{k}!\right] \\ $$$${It}\:{telescopes}\:{and}\:{becomes} \\ $$$${u}_{{n}} =\left({n}+\mathrm{1}\right)!−\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *