let-put-u-n-k-1-n-k-k-1-prove-that-u-n-n-1-1-2-study-the-convergence-of-n-1-1-u-n- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 32273 by abdo imad last updated on 22/Mar/18 letputun=∑k=1nk(k!)1)provethatun=(n+1)!−12)studytheconvergenceof∑n=1∞1un. Commented by abdo imad last updated on 25/Mar/18 1)letprovethisrelationbyrecurrencep(1)u1=2!−1=1×(1!)p(1)istrueletsuposeun=(n+1)!−1⇒un+1=∑k=1n+1k(k!)=∑k=1nk(k!)+(n+1)(n+1)!=(n+1)!−1+(n+1)(n+1)!=(n+1)!(n+1+1)−1=(n+2)(n+1)!−1=(n+2)!−1theimplicationp(n)⇒p(n+1)istrue.2)wehave∑n=1∞1un=∑n=1∞1(n+1)!−1butforn→∞1(n+1)!−1∼1(n+1)!andΣ1(n+1)!isconvergentsoΣ1uniscovergent. Answered by Tinkutara last updated on 23/Mar/18 un=∑nk=1(k+1−1)(k!)un=∑nk=1[(k+1)!−k!]Ittelescopesandbecomesun=(n+1)!−1 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: study-the-convergence-of-n-1-1-n-1-n-1-3-Next Next post: Question-97808 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.