Menu Close

let-put-w-e-i-2pi-n-calculate-S-n-k-0-n-1-1-x-w-k-and-W-n-k-0-n-1-1-x-w-k-2-




Question Number 28432 by abdo imad last updated on 25/Jan/18
let put w=e^(i((2π)/n))  calculate  S_n =  Σ_(k=0) ^(n−1)    (1/(x−w^k ))  and  W_n = Σ_(k=0) ^(n−1)   (1/((x−w^k )^2 )) .
letputw=ei2πncalculateSn=k=0n11xwkandWn=k=0n11(xwk)2.
Commented by abdo imad last updated on 27/Jan/18
let introduce the polynomial p(x)= x^n −1  the roots of  p(x)are the complex z_k  =e^(i((2kπ)/n))    and k∈[[0,n−1]]  we know that  ((p^′ (x))/(p(x))) = Σ_(k=0) ^(n−1)    (1/(x−z_k )) =Σ_(k=0) ^(n−1)   (1/(x−w^k )) so  S_n  = ((nx^(n−1) )/(x^n −1))  also we have by derivation  (d/dx)( ((p^′ (x))/(p(x))))=−Σ_(k=0) ^(n−1)   (1/((x−w^k )^2 ))  ⇒((p^(′′) (x)p(x) −(p^′ (x))^2 )/((p(x))^2 ))=−Σ_(k=0) ^(n−1)     (1/((x−w^k )^2 ))  W_n  =−((n(n−1)x^(n−2) ( x^n −1) −(nx^(n−1) )^2 )/((x^n  −1)^2 ))  =−((n(n−1) x^(2n−2)  −n(n−1)x^(n−2)  −n^2 x^(2n−2) )/((x^n −1)^2 ))  =−((−n x^(2n−2)  −n(n−1)x^(n−2) )/((x^n −1)^2 ))=((n x^(2n−2)  −n(n−1)x^(n−2) )/((x^n −1)^2 ))  for n≥2 .
letintroducethepolynomialp(x)=xn1therootsofp(x)arethecomplexzk=ei2kπnandk[[0,n1]]weknowthatp(x)p(x)=k=0n11xzk=k=0n11xwksoSn=nxn1xn1alsowehavebyderivationddx(p(x)p(x))=k=0n11(xwk)2p(x)p(x)(p(x))2(p(x))2=k=0n11(xwk)2Wn=n(n1)xn2(xn1)(nxn1)2(xn1)2=n(n1)x2n2n(n1)xn2n2x2n2(xn1)2=nx2n2n(n1)xn2(xn1)2=nx2n2n(n1)xn2(xn1)2forn2.

Leave a Reply

Your email address will not be published. Required fields are marked *