Menu Close

let-put-x-n-1-1-n-x-with-x-gt-1-and-x-n-1-1-n-n-x-find-a-relation-between-x-and-x-




Question Number 26223 by abdo imad last updated on 22/Dec/17
let put ξ(x)=  Σ_(n=1) ^∝   (1/n^x )  with x>1  and  δ(x)  =Σ_(n=1) ^∝   (((−1)^n )/n^x )   find a relation  between ξ(x) and δ(x).
letputξ(x)=n=11nxwithx>1andδ(x)=n=1(1)nnxfindarelationbetweenξ(x)andδ(x).
Commented by abdo imad last updated on 23/Dec/17
δ(x) =  Σ_(p=1) ^∝  (1/((2p)^x ))  − Σ_(p=0) ^∝  (1/((2p+1)^x ))= 2^(−x) ξ(x)− Σ_(p=0) ^∝  (1/((2p+1)^x ))  but  ξ(x)  =  Σ_(p=1) ^∝  (1/((2p)^x ))  + Σ_(p=0) ^∝   (1/((2p+1)^x ))  ⇒   Σ_(p=0) ^∝   (1/((2p+1)^x ))  = ξ(x) −2^(−x) ξ(x) =(1−2^(−x) )ξ(x)  ⇒  δ(x)= 2^(−x) −(1−2^(−x) )ξ(x)=( 2^(1−x)  −1)ξ(x)
δ(x)=p=11(2p)xp=01(2p+1)x=2xξ(x)p=01(2p+1)xbutξ(x)=p=11(2p)x+p=01(2p+1)xp=01(2p+1)x=ξ(x)2xξ(x)=(12x)ξ(x)δ(x)=2x(12x)ξ(x)=(21x1)ξ(x)
Answered by prakash jain last updated on 22/Dec/17
δ(x)=Σ_(n=1) ^∞ (((−1)^n )/n^x )  =−(Σ_(n=1) ^∞ (1/n^x )−2Σ_(n=1) ^∞ (1/((2n)^x )))  −1+(1/2^x )−(1/3^x )+..=−(1+(1/2^x )+(1/3^x ))..+2[(1/2^x )+(1/4^x )+..]  =−(Σ_(n=1) ^∞ (1/n^x )−2Σ_(n=1) ^∞ (1/((2n)^x )))  δ(x)=−ζ(x)+(2/2^x )ζ(x)  δ(x)=(2^(x−1) −1)ζ(x)
δ(x)=n=1(1)nnx=(n=11nx2n=11(2n)x)1+12x13x+..=(1+12x+13x)..+2[12x+14x+..]=(n=11nx2n=11(2n)x)δ(x)=ζ(x)+22xζ(x)δ(x)=(2x11)ζ(x)
Commented by prakash jain last updated on 22/Dec/17
δ(x)=−η(x) (eta function)
δ(x)=η(x)(etafunction)

Leave a Reply

Your email address will not be published. Required fields are marked *