Menu Close

let-q-R-q-lt-1-show-that-k-0-k-2-q-k-q-2-q-1-q-3-




Question Number 130921 by pticantor last updated on 30/Jan/21
let q∈R/ ∣q∣<1     show that  Σ_(k=0) ^(+∞) k^2 q^k =((q^2 +q)/((1−q)^3 ))
$$\boldsymbol{{let}}\:\boldsymbol{{q}}\in\mathbb{R}/\:\mid\boldsymbol{{q}}\mid<\mathrm{1} \\ $$$$\: \\ $$$$\boldsymbol{{show}}\:\boldsymbol{{that}} \\ $$$$\underset{\boldsymbol{{k}}=\mathrm{0}} {\overset{+\infty} {\sum}}\boldsymbol{{k}}^{\mathrm{2}} \boldsymbol{{q}}^{\boldsymbol{{k}}} =\frac{\boldsymbol{{q}}^{\mathrm{2}} +\boldsymbol{{q}}}{\left(\mathrm{1}−\boldsymbol{{q}}\right)^{\mathrm{3}} } \\ $$
Answered by Dwaipayan Shikari last updated on 30/Jan/21
S=Σ_(k=0) ^∞ k^2 q^k =1^2 q+2^2 q^2 +3^2 q^3 +....  S(1−q)=     q+(2^2 −1^2 )q^2 +(3^2 −2^2 )q^3 +...  S(1−q)^2 =q+2q^2 +2q^3 +2q^4 +...  S(1−q)^2 =((2q)/((1−q)))−q⇒S=((q^2 +q)/((1−q)^3 ))
$${S}=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{k}^{\mathrm{2}} {q}^{{k}} =\mathrm{1}^{\mathrm{2}} {q}+\mathrm{2}^{\mathrm{2}} {q}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} {q}^{\mathrm{3}} +…. \\ $$$${S}\left(\mathrm{1}−{q}\right)=\:\:\:\:\:{q}+\left(\mathrm{2}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} \right){q}^{\mathrm{2}} +\left(\mathrm{3}^{\mathrm{2}} −\mathrm{2}^{\mathrm{2}} \right){q}^{\mathrm{3}} +… \\ $$$${S}\left(\mathrm{1}−{q}\right)^{\mathrm{2}} ={q}+\mathrm{2}{q}^{\mathrm{2}} +\mathrm{2}{q}^{\mathrm{3}} +\mathrm{2}{q}^{\mathrm{4}} +… \\ $$$${S}\left(\mathrm{1}−{q}\right)^{\mathrm{2}} =\frac{\mathrm{2}{q}}{\left(\mathrm{1}−{q}\right)}−{q}\Rightarrow{S}=\frac{{q}^{\mathrm{2}} +{q}}{\left(\mathrm{1}−{q}\right)^{\mathrm{3}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *