Menu Close

let-q-R-q-lt-1-show-that-k-0-k-2-q-k-q-2-q-1-q-3-




Question Number 130921 by pticantor last updated on 30/Jan/21
let q∈R/ ∣q∣<1     show that  Σ_(k=0) ^(+∞) k^2 q^k =((q^2 +q)/((1−q)^3 ))
letqR/q∣<1showthat+k=0k2qk=q2+q(1q)3
Answered by Dwaipayan Shikari last updated on 30/Jan/21
S=Σ_(k=0) ^∞ k^2 q^k =1^2 q+2^2 q^2 +3^2 q^3 +....  S(1−q)=     q+(2^2 −1^2 )q^2 +(3^2 −2^2 )q^3 +...  S(1−q)^2 =q+2q^2 +2q^3 +2q^4 +...  S(1−q)^2 =((2q)/((1−q)))−q⇒S=((q^2 +q)/((1−q)^3 ))
S=k=0k2qk=12q+22q2+32q3+.S(1q)=q+(2212)q2+(3222)q3+S(1q)2=q+2q2+2q3+2q4+S(1q)2=2q(1q)qS=q2+q(1q)3

Leave a Reply

Your email address will not be published. Required fields are marked *