Question Number 35605 by abdo mathsup 649 cc last updated on 21/May/18
$${let}\:{r}\in\left[\mathrm{0},\mathrm{1}\left[\:{and}\:\theta\:\in\:{R},{x}\in\:{R}\:{prove}\:{that}\right.\right. \\ $$$$\left.\mathrm{1}\right)\:\mathrm{1}+\:\mathrm{2}\:\sum_{{n}=\mathrm{1}} ^{+\infty} \:{r}^{{n}} {cos}\theta\:=\:\frac{\mathrm{1}−{r}^{\mathrm{2}} }{\mathrm{1}−\mathrm{2}{r}\:{cos}\theta\:+{r}^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\mathrm{1}\:=\frac{\mathrm{1}}{\mathrm{2}\pi}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\:\:\frac{\left(\mathrm{1}−{r}^{\mathrm{2}} \right)}{\mathrm{1}−\mathrm{2}{rcos}\left({t}−{x}\right)\:+{r}^{\mathrm{2}} }{dt} \\ $$