Menu Close

let-r-0-1-and-x-from-R-F-x-r-1-2pi-0-2pi-1-r-2-f-t-1-2r-cos-t-x-r-2-dt-with-f-C-0-R-2pi-periodic-and-f-sup-t-R-f-t-prove-that-F-x-r-a-0-2-n-1-




Question Number 35608 by abdo mathsup 649 cc last updated on 21/May/18
let r∈[0,1[ and x from R  F(x,r) = (1/(2π)) ∫_0 ^(2π)     (((1−r^2 )f(t))/(1−2r cos(t−x) +r^2 ))dt  with  f  ∈ C^0 (R)  2π periodic  and  ∣∣f∣∣=sup_(t∈R) ∣f(t)∣   prove that F(x,r)= (a_0 /2) + Σ_(n=1) ^∞ r^n (a_n cos(nx) +b_n sin(nx))  with a_n = (1/π) ∫_0 ^(2π)  f(t) cos(nt)dt and  b_n = (1/π) ∫_0 ^(2π)   f(t)sin(nt)dt
$${let}\:{r}\in\left[\mathrm{0},\mathrm{1}\left[\:{and}\:{x}\:{from}\:{R}\right.\right. \\ $$$${F}\left({x},{r}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}\pi}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\frac{\left(\mathrm{1}−{r}^{\mathrm{2}} \right){f}\left({t}\right)}{\mathrm{1}−\mathrm{2}{r}\:{cos}\left({t}−{x}\right)\:+{r}^{\mathrm{2}} }{dt}\:\:{with} \\ $$$${f}\:\:\in\:{C}^{\mathrm{0}} \left({R}\right)\:\:\mathrm{2}\pi\:{periodic}\:\:{and}\:\:\mid\mid{f}\mid\mid={sup}_{{t}\in{R}} \mid{f}\left({t}\right)\mid \\ $$$$\:{prove}\:{that}\:{F}\left({x},{r}\right)=\:\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:+\:\sum_{{n}=\mathrm{1}} ^{\infty} {r}^{{n}} \left({a}_{{n}} {cos}\left({nx}\right)\:+{b}_{{n}} {sin}\left({nx}\right)\right) \\ $$$${with}\:{a}_{{n}} =\:\frac{\mathrm{1}}{\pi}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:{f}\left({t}\right)\:{cos}\left({nt}\right){dt}\:{and} \\ $$$${b}_{{n}} =\:\frac{\mathrm{1}}{\pi}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:{f}\left({t}\right){sin}\left({nt}\right){dt} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *