Menu Close

let-r-0-1-and-x-from-R-F-x-r-1-2pi-0-2pi-1-r-2-f-t-1-2r-cos-t-x-r-2-dt-with-f-C-0-R-2pi-periodic-and-f-sup-t-R-f-t-prove-that-F-x-r-a-0-2-n-1-




Question Number 35608 by abdo mathsup 649 cc last updated on 21/May/18
let r∈[0,1[ and x from R  F(x,r) = (1/(2π)) ∫_0 ^(2π)     (((1−r^2 )f(t))/(1−2r cos(t−x) +r^2 ))dt  with  f  ∈ C^0 (R)  2π periodic  and  ∣∣f∣∣=sup_(t∈R) ∣f(t)∣   prove that F(x,r)= (a_0 /2) + Σ_(n=1) ^∞ r^n (a_n cos(nx) +b_n sin(nx))  with a_n = (1/π) ∫_0 ^(2π)  f(t) cos(nt)dt and  b_n = (1/π) ∫_0 ^(2π)   f(t)sin(nt)dt
letr[0,1[andxfromRF(x,r)=12π02π(1r2)f(t)12rcos(tx)+r2dtwithfC0(R)2πperiodicand∣∣f∣∣=suptRf(t)provethatF(x,r)=a02+n=1rn(ancos(nx)+bnsin(nx))withan=1π02πf(t)cos(nt)dtandbn=1π02πf(t)sin(nt)dt

Leave a Reply

Your email address will not be published. Required fields are marked *