Menu Close

Let-R-5-5-11-2n-1-and-f-R-R-then-prove-that-Rf-4-2n-1-




Question Number 22474 by Tinkutara last updated on 19/Oct/17
Let R = (5(√5) + 11)^(2n+1)  and f = R − [R],  then prove that Rf = 4^(2n+1) .
$$\mathrm{Let}\:{R}\:=\:\left(\mathrm{5}\sqrt{\mathrm{5}}\:+\:\mathrm{11}\right)^{\mathrm{2}{n}+\mathrm{1}} \:\mathrm{and}\:{f}\:=\:{R}\:−\:\left[{R}\right], \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\:{Rf}\:=\:\mathrm{4}^{\mathrm{2}{n}+\mathrm{1}} . \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *