Menu Close

Let-R-denote-a-set-of-all-ordered-pairs-x-y-of-integers-such-that-x-y-is-an-integral-multiple-of-3-Which-of-the-followings-ordered-pairs-belong-to-R-9-3-3-9-1-2-1-5-7-2-0-4-




Question Number 186103 by MASANJAJJ last updated on 01/Feb/23
Let R denote a set of all ordered pairs (x, y)   of integers such that x−y is an integral   multiple of 3. Which of the followings ordered pairs  belong to R (9,3) (3, 9),( 1 ,2) (1, 5),(7, 2)   (0, 4), (4 ,7).  (note: a is an integral multiple of b if a=kb  where k is an integer)
$$\mathrm{Let}\:\mathrm{R}\:\mathrm{denote}\:\mathrm{a}\:\mathrm{set}\:\mathrm{of}\:\mathrm{all}\:\mathrm{ordered}\:\mathrm{pairs}\:\left(\mathrm{x},\:\mathrm{y}\right)\: \\ $$$$\mathrm{of}\:\mathrm{integers}\:\mathrm{such}\:\mathrm{that}\:\mathrm{x}−\mathrm{y}\:\mathrm{is}\:\mathrm{an}\:\mathrm{integral} \\ $$$$\:\mathrm{multiple}\:\mathrm{of}\:\mathrm{3}.\:\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{followings}\:\mathrm{ordered}\:\mathrm{pairs} \\ $$$$\mathrm{belong}\:\mathrm{to}\:\mathrm{R}\:\left(\mathrm{9},\mathrm{3}\right)\:\left(\mathrm{3},\:\mathrm{9}\right),\left(\:\mathrm{1}\:,\mathrm{2}\right)\:\left(\mathrm{1},\:\mathrm{5}\right),\left(\mathrm{7},\:\mathrm{2}\right) \\ $$$$\:\left(\mathrm{0},\:\mathrm{4}\right),\:\left(\mathrm{4}\:,\mathrm{7}\right). \\ $$$$\left(\mathrm{note}:\:\mathrm{a}\:\mathrm{is}\:\mathrm{an}\:\mathrm{integral}\:\mathrm{multiple}\:\mathrm{of}\:\mathrm{b}\:\mathrm{if}\:\mathrm{a}=\mathrm{kb}\right. \\ $$$$\left.\mathrm{whe}{re}\:\mathrm{k}\:\mathrm{is}\:\mathrm{an}\:\mathrm{integer}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *