Menu Close

let-r-p-2-q-2-p-and-q-from-R-and-p-gt-0-q-gt-0-1-prove-that-0-e-px-cos-px-x-dx-pi-r-r-p-2-2-0-e-px-sin-qx-x-dx-pi-r-r-p-2-




Question Number 37347 by math khazana by abdo last updated on 12/Jun/18
let r =(√(p^2  +q^2 ))   p and q from R  and p>0  q>0  1)prove that  ∫_0 ^(+∞)   e^(−px)  ((cos(px))/( (√x)))dx=((√π)/r)(√((r+p)/2))  2) ∫_0 ^∞   e^(−px)   ((sin(qx))/( (√x)))dx =((√π)/r) (√((r−p)/2))
letr=p2+q2pandqfromRandp>0q>01)provethat0+epxcos(px)xdx=πrr+p22)0epxsin(qx)xdx=πrrp2
Commented by math khazana by abdo last updated on 12/Jun/18
let I = ∫_0 ^∞   e^(−px)  ((cos(qx))/( (√x))) dx changement (√x)=t  give I = ∫_0 ^∞   e^(−pt^2 )  ((cos(qt^2 ))/t) 2tdt  = 2 ∫_0 ^∞    e^(−pt^2 ) cos(qt^2 )dt=∫_(−∞) ^(+∞)   e^(−pt^2 )  cos(qt^2 )dt  =Re( ∫_(−∞) ^(+∞)  e^(−pt^2 )  e^(iqt^2 ) dt)  but   ∫_(−∞) ^(+∞)    e^(−pt^2  +iqt^2 ) dt  = ∫_(−∞) ^(+∞)   e^(−(p−iq)t^2 ) dt  =_((√(p−iq))t=u)   ∫_(−∞) ^(+∞)   e^(−u^2 )   (du/( (√(p−iq))))  = (1/( (√(p−iq))))(√π)      but  p−iq =(√(p^2 +q^2 )){(p/( (√(p^2 +q^2 )))) −i(q/( (√(p^2  +q^2 ))))}  =r{ (p/r) −i(q/r)}=r e^(iθ)  ⇒ cosθ = (p/r) and  sinθ =((−q)/r) ⇒ tanθ= −(q/p) ⇒θ =−arctan((q/p))⇒  p−iq =r e^(−iarctan((q/p)))  and (√(p−iq)) =(√r)e^(−(i/2)arctan((q/(p)))))   ⇒ ∫_(−∞) ^(+∞)   e^(−(p−iq)^ t^2 ) dt = ((√π)/( (√r))) e^((i/2) arctan((q/p)))   ⇒ I  =((√π)/( (√r))) cos(((arctan((q/p)))/2)) but  cos((1/2)arctan((q/p)))= (√((1+cos(arctan((q/p))))/2))  =(1/( (√2)))(√( 1+(1/( (√(1+(q^2 /p^2 )))))))  =(1/( (√2)))(√(1+(p/( (√(p^2 +q^2 ))))))  =(1/( (√2)))(√((r+p)/r))  = (1/( (√2)(√r)))(√(r+p))  ⇒  I  =((√π)/( (√r)))  (1/( (√2)(√r))) (√(r+p))= ((√π)/r)(√(((r+p)/2) )) .
letI=0epxcos(qx)xdxchangementx=tgiveI=0ept2cos(qt2)t2tdt=20ept2cos(qt2)dt=+ept2cos(qt2)dt=Re(+ept2eiqt2dt)but+ept2+iqt2dt=+e(piq)t2dt=piqt=u+eu2dupiq=1piqπbutpiq=p2+q2{pp2+q2iqp2+q2}=r{priqr}=reiθcosθ=prandsinθ=qrtanθ=qpθ=arctan(qp)piq=reiarctan(qp)andpiq=rei2arctan(qp))+e(piq)t2dt=πrei2arctan(qp)I=πrcos(arctan(qp)2)butcos(12arctan(qp))=1+cos(arctan(qp))2=121+11+q2p2=121+pp2+q2=12r+pr=12rr+pI=πr12rr+p=πrr+p2.
Commented by math khazana by abdo last updated on 12/Jun/18
1) the Q is prove that  ∫_0 ^∞    e^(−px)   ((cos(qx))/( (√x))) dx = ((√π)/r)(√((r+p)/2))  .
1)theQisprovethat0epxcos(qx)xdx=πrr+p2.
Answered by tanmay.chaudhury50@gmail.com last updated on 12/Jun/18
A=∫_0 ^∞ e^(−px) .((cosqx)/( (√x)))dx  B=∫_0 ^∞ e^(−px) ((sinqx)/( (√x)))dx  A+iB=∫_0 ^∞ e^(−px) .(e^(iqx) /( (√x)))dx  =∫_0 ^∞ e^(−x(p−iq)) ×x^(−(1/2)) dx  t=(p−iq)x  dt=(p−iq)dx  =(1/(p−iq))∫_0 ^∞ e^(−it) ×((t/(p−iq)))^(−(1/2)) dt  =(1/((p−iq)^(1/2) ))∫_0 ^∞ e^(−it) ×t^(−(1/2)) dt  =((√Π)/((p−iq)^(1/2) ))  p=rcosθ  q=rsinθ  (rcosθ−rsinθ)^(1/2)   =(√r) ×e^(−i(θ/2))   =(√r) ×(cos(θ/2))+i(√r) sin(θ/2)  contd
A=0epx.cosqxxdxB=0epxsinqxxdxA+iB=0epx.eiqxxdx=0ex(piq)×x12dxt=(piq)xdt=(piq)dx=1piq0eit×(tpiq)12dt=1(piq)120eit×t12dt=Π(piq)12p=rcosθq=rsinθ(rcosθrsinθ)12=r×eiθ2=r×(cosθ2)+irsinθ2contd

Leave a Reply

Your email address will not be published. Required fields are marked *