Menu Close

let-S-1-2-2018-compute-S-mod-2-S-mod8-S-mod2018-




Question Number 34159 by candre last updated on 01/May/18
let S=1+2+...+2018  compute S(mod 2)+S(mod8)+S(mod2018)
letS=1+2++2018computeS(mod2)+S(mod8)+S(mod2018)
Commented by Rasheed.Sindhi last updated on 05/May/18
S=(1+3+5+...+2017)+(2+4+...+2018)  Sum of even numbers is even number       ∴ 2+4+...+2018 even number  Sum of odd numbers,when number of  numbers is odd, is odd.      ∴ 1+3+5+...+2017 is odd number    ∴S=odd+even=odd number  ∴ S(mod2)=1  −−−−−  S(mod8)?  −−−−−−  S=(1+2+3+...+2017)+2018     =(1+2017)+(2+2016)+...+1009+2018     =2018+2018+...+1009+2018     =(multiple of 2018)+1009  ∴ S(mod 2018)=1009  Continue
S=(1+3+5++2017)+(2+4++2018)Sumofevennumbersisevennumber2+4++2018evennumberSumofoddnumbers,whennumberofnumbersisodd,isodd.1+3+5++2017isoddnumberS=odd+even=oddnumberS(mod2)=1S(mod8)?S=(1+2+3++2017)+2018=(1+2017)+(2+2016)++1009+2018=2018+2018++1009+2018=(multipleof2018)+1009S(mod2018)=1009Continue
Answered by Rasheed.Sindhi last updated on 05/May/18
S=1+2+...+2018; an AP:a=1,d=1,n=2018  S=(n/2)[2a+(n−1)d]  S=((2018)/2)[2(1)+(2018−1)(1)]      =1009[2018+1]      =2018×1009+1009  ∴S(mod2018)=1009.........A  −−−−−−−−−−−  S=1009×2019     =(1008+1)(2018+1)     =1008×2018+1008+2018+1     =1008×2019+2018+1     =2(504×2019+1009)+1  ∴S(mod 2)=1................B  −−−−−−  S=1009×2019     =(1009)(2000+16+3)     =2000×1009+16×1009+3×1009     =2000×1009+16×1009+3000+27     =2000×1009+16×1009+3000+24+3  2000,16,3000 & 24 are divisible by 8   [Complete thousands are always divisible  by8]  ∴ S(mod 8)=3...............C  From A,B &C   S(mod 2)+S(mod 8)+S(mod 2018)        =1+3+1009=1013
S=1+2++2018;anAP:a=1,d=1,n=2018S=n2[2a+(n1)d]S=20182[2(1)+(20181)(1)]=1009[2018+1]=2018×1009+1009S(mod2018)=1009AS=1009×2019=(1008+1)(2018+1)=1008×2018+1008+2018+1=1008×2019+2018+1=2(504×2019+1009)+1S(mod2)=1.BS=1009×2019=(1009)(2000+16+3)=2000×1009+16×1009+3×1009=2000×1009+16×1009+3000+27=2000×1009+16×1009+3000+24+32000,16,3000&24aredivisibleby8[Completethousandsarealwaysdivisibleby8]S(mod8)=3CFromA,B&CS(mod2)+S(mod8)+S(mod2018)=1+3+1009=1013
Commented by Rasheed.Sindhi last updated on 09/May/18
Mr. candre please confirm the answer.
Mr.candrepleaseconfirmtheanswer.

Leave a Reply

Your email address will not be published. Required fields are marked *