let-S-1-2-2018-compute-S-mod-2-S-mod8-S-mod2018- Tinku Tara June 4, 2023 Others 0 Comments FacebookTweetPin Question Number 34159 by candre last updated on 01/May/18 letS=1+2+…+2018computeS(mod2)+S(mod8)+S(mod2018) Commented by Rasheed.Sindhi last updated on 05/May/18 S=(1+3+5+…+2017)+(2+4+…+2018)Sumofevennumbersisevennumber∴2+4+…+2018evennumberSumofoddnumbers,whennumberofnumbersisodd,isodd.∴1+3+5+…+2017isoddnumber∴S=odd+even=oddnumber∴S(mod2)=1−−−−−S(mod8)?−−−−−−S=(1+2+3+…+2017)+2018=(1+2017)+(2+2016)+…+1009+2018=2018+2018+…+1009+2018=(multipleof2018)+1009∴S(mod2018)=1009Continue Answered by Rasheed.Sindhi last updated on 05/May/18 S=1+2+…+2018;anAP:a=1,d=1,n=2018S=n2[2a+(n−1)d]S=20182[2(1)+(2018−1)(1)]=1009[2018+1]=2018×1009+1009∴S(mod2018)=1009………A−−−−−−−−−−−S=1009×2019=(1008+1)(2018+1)=1008×2018+1008+2018+1=1008×2019+2018+1=2(504×2019+1009)+1∴S(mod2)=1…………….B−−−−−−S=1009×2019=(1009)(2000+16+3)=2000×1009+16×1009+3×1009=2000×1009+16×1009+3000+27=2000×1009+16×1009+3000+24+32000,16,3000&24aredivisibleby8[Completethousandsarealwaysdivisibleby8]∴S(mod8)=3……………CFromA,B&CS(mod2)+S(mod8)+S(mod2018)=1+3+1009=1013 Commented by Rasheed.Sindhi last updated on 09/May/18 Mr.candrepleaseconfirmtheanswer. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: make-x-the-subject-of-the-formula-a-x-bx-c-0-Next Next post: prove-that-lim-x-0-ln-x-ln-1-x-lim-x-1-ln-x-ln-1-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.