Menu Close

let-S-be-the-sets-be-the-sequences-of-lenght-2018-whose-terms-are-in-the-sets-1-2-3-4-5-6-10-and-sum-to-3860-prove-that-the-cardinality-of-S-is-at-most-2-386




Question Number 188295 by normans last updated on 27/Feb/23
      let  S be the sets be the sequences of lenght 2018        whose terms are in the sets {1,2,3,4,5,6,10} and sum to 3860.         prove that the cardinality of S is at most                      2^(3860) ∙( ((2018)/(2048)))^(2018)
$$ \\ $$$$\:\:\:\:\boldsymbol{{let}}\:\:\boldsymbol{{S}}\:\boldsymbol{{be}}\:\boldsymbol{{the}}\:\boldsymbol{{sets}}\:\boldsymbol{{be}}\:\boldsymbol{{the}}\:\boldsymbol{{sequences}}\:\boldsymbol{{of}}\:\boldsymbol{{lenght}}\:\mathrm{2018}\:\:\: \\ $$$$\:\:\:\boldsymbol{{whose}}\:\boldsymbol{{terms}}\:\boldsymbol{{are}}\:\boldsymbol{{in}}\:\boldsymbol{{the}}\:\boldsymbol{{sets}}\:\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\mathrm{6},\mathrm{10}\right\}\:\boldsymbol{{and}}\:\boldsymbol{{sum}}\:\boldsymbol{{to}}\:\mathrm{3860}.\:\:\: \\ $$$$\:\:\:\:\boldsymbol{{prove}}\:\boldsymbol{{that}}\:\boldsymbol{{the}}\:\boldsymbol{{cardinality}}\:\boldsymbol{{of}}\:\boldsymbol{{S}}\:\boldsymbol{{is}}\:\boldsymbol{{at}}\:\boldsymbol{{most}}\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}^{\mathrm{3860}} \centerdot\left(\:\frac{\mathrm{2018}}{\mathrm{2048}}\right)^{\mathrm{2018}} \\ $$$$ \\ $$$$\:\:\:\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *