let-S-n-0-n-x-1-x-x-1-x-3-dx-1-calculate-S-n-2-find-lim-n-S-n- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 39660 by abdo mathsup 649 cc last updated on 09/Jul/18 letSn=∫0nx(−1)[x](x+1−[x])3dx1)calculateSn2)findlimn→+∞Sn Commented by maxmathsup by imad last updated on 11/Jul/18 1)Sn=∑k=0n−1∫kk+1x(−1)k(x+1−k)3dx=∑k=0n−1(−1)k∫kk+1x(x+1−k)3dxbut∫kk+1x(x+1−k)2dx=∫kk+1x+1−k+k−1(x+1−k)2dx=∫kk+1dxx+1−k+(k−1)[−1x+1−k]kk+1=[ln∣x+1−k∣]kk+1+(k−1){1−12}=ln(2)+12(k−1)Sn=∑k=0n−1(−1)k{ln(2)+12(k−1)}=ln(2)∑k=0n−1(−1)k+12∑k=0n−1(−1)k(k−1)butwehave∑k=0n−1(−1)k=1−(−1)n2∑k=0n−1(−1)k(k−1)=−1+∑k=1n−1(−1)k(k−1)=−1+∑k=0n−2(−1)k+1k=−1−∑k=0n−2k(−1)k=−1−∑k=1n−2k(−1)k∑k=0Nxk=xN+1−1x−1⇒∑k=1Nkxk−1=NxN+1−(N+1)xn+1(x−1)2⇒∑k=1Nkxk=x(x−1)2{NxN+1−(N+1)xN+1}⇒∑k=1n−2k(−1)k=−14{(n−2)(−1)n−1−(n−1)(−1)n−2+1}⇒Sn=ln(2)2{1−(−1)n}+12{−1+14{(n−2)(−1)n−1−(n−1)(−1)n−2+1}} Commented by maxmathsup by imad last updated on 11/Jul/18 2)wehaveS2n=−12+18{−(2n−2)−(2n−1)+1)}=−12+18{−4n+4}=12+12{−n+1}=1−n2S2n+1=ln(2)+12{−1+14((2n−1)−(2n)(−1)+1)}=ln(2)+12{−1+14(4n+2)}anditsclearthat(Sn)isnotconvergent! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-105195Next Next post: Question-170738 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.