Menu Close

let-S-n-0-n-x-1-x-x-1-x-3-dx-1-calculate-S-n-2-find-lim-n-S-n-




Question Number 39660 by abdo mathsup 649 cc last updated on 09/Jul/18
let  S_n   = ∫_0 ^n      ((x(−1)^([x]) )/((x+1 −[x])^3 ))dx  1) calculate  S_n   2) find lim_(n→+∞)   S_n
letSn=0nx(1)[x](x+1[x])3dx1)calculateSn2)findlimn+Sn
Commented by maxmathsup by imad last updated on 11/Jul/18
1) S_n = Σ_(k=0) ^(n−1)   ∫_k ^(k+1)    ((x(−1)^k )/((x+1−k)^3 ))dx=Σ_(k=0) ^(n−1)  (−1)^k  ∫_k ^(k+1)   (x/((x+1−k)^3 ))dx but  ∫_k ^(k+1)     (x/((x+1−k)^2 ))dx = ∫_k ^(k+1)  ((x+1 −k  +k−1)/((x+1−k)^2 ))dx  =∫_k ^(k+1)  (dx/(x+1−k))  +(k−1)[−(1/(x+1−k))]_k ^(k+1)   =[ln∣x+1−k∣]_k ^(k+1)   +(k−1) {1 −(1/2)}=ln(2) +(1/2)(k−1)  S_n = Σ_(k=0) ^(n−1) (−1)^k  {ln(2) +(1/2)(k−1)}  =ln(2) Σ_(k=0) ^(n−1)  (−1)^k   +(1/2) Σ_(k=0) ^(n−1) (−1)^k (k−1)  but we have  Σ_(k=0) ^(n−1) (−1)^k  =((1−(−1)^n )/2)  Σ_(k=0) ^(n−1) (−1)^k (k−1)^  =−1 +Σ_(k=1) ^(n−1) (−1)^k (k−1)  =−1 +Σ_(k=0) ^(n−2) (−1)^(k+1) k =−1  −Σ_(k=0) ^(n−2)  k(−1)^k  =−1−Σ_(k=1) ^(n−2) k(−1)^k   Σ_(k=0) ^N  x^k  =((x^(N+1) −1)/(x−1)) ⇒Σ_(k=1) ^N  k x^(k−1)   =((Nx^(N+1) −(N+1)x^n  +1)/((x−1)^2 )) ⇒  Σ_(k=1) ^N  k x^k   =(x/((x−1)^2 )){ Nx^(N+1) −(N+1)x^N  +1} ⇒  Σ_(k=1) ^(n−2)  k(−1)^k  = ((−1)/4){(n−2)(−1)^(n−1) −(n−1)(−1)^(n−2)  +1} ⇒  S_n =((ln(2))/2){1−(−1)^n } +(1/2){ −1  +(1/4){(n−2)(−1)^(n−1)  −(n−1)(−1)^(n−2)  +1}}
1)Sn=k=0n1kk+1x(1)k(x+1k)3dx=k=0n1(1)kkk+1x(x+1k)3dxbutkk+1x(x+1k)2dx=kk+1x+1k+k1(x+1k)2dx=kk+1dxx+1k+(k1)[1x+1k]kk+1=[lnx+1k]kk+1+(k1){112}=ln(2)+12(k1)Sn=k=0n1(1)k{ln(2)+12(k1)}=ln(2)k=0n1(1)k+12k=0n1(1)k(k1)butwehavek=0n1(1)k=1(1)n2k=0n1(1)k(k1)=1+k=1n1(1)k(k1)=1+k=0n2(1)k+1k=1k=0n2k(1)k=1k=1n2k(1)kk=0Nxk=xN+11x1k=1Nkxk1=NxN+1(N+1)xn+1(x1)2k=1Nkxk=x(x1)2{NxN+1(N+1)xN+1}k=1n2k(1)k=14{(n2)(1)n1(n1)(1)n2+1}Sn=ln(2)2{1(1)n}+12{1+14{(n2)(1)n1(n1)(1)n2+1}}
Commented by maxmathsup by imad last updated on 11/Jul/18
2) we have  S_(2n) =−(1/2) +(1/8){−(2n−2)−(2n−1) +1)}  =−(1/2) +(1/8){−4n +4} =(1/2) +(1/2){−n+1}=1−(n/2)  S_(2n+1)   =ln(2) +(1/2){ −1 +(1/4)((2n−1)−(2n)(−1) +1)}  =ln(2) +(1/2){−1 +(1/4)(4n +2)} and its clear that (S_n ) is not convergent!
2)wehaveS2n=12+18{(2n2)(2n1)+1)}=12+18{4n+4}=12+12{n+1}=1n2S2n+1=ln(2)+12{1+14((2n1)(2n)(1)+1)}=ln(2)+12{1+14(4n+2)}anditsclearthat(Sn)isnotconvergent!

Leave a Reply

Your email address will not be published. Required fields are marked *