Menu Close

let-S-n-1-1-3-2-1-3-3-1-3-n-calculate-lim-n-S-n-




Question Number 41517 by maxmathsup by imad last updated on 08/Aug/18
let  S_n = 1 +(1/((^3 (√2)))) + (1/((^3 (√3)))) + ....+(1/((^3 (√n))))  calculate lim _(n→+∞)  S_n
$${let}\:\:{S}_{{n}} =\:\mathrm{1}\:+\frac{\mathrm{1}}{\left(^{\mathrm{3}} \sqrt{\mathrm{2}}\right)}\:+\:\frac{\mathrm{1}}{\left(^{\mathrm{3}} \sqrt{\mathrm{3}}\right)}\:+\:….+\frac{\mathrm{1}}{\left(^{\mathrm{3}} \sqrt{{n}}\right)} \\ $$$${calculate}\:{lim}\:_{{n}\rightarrow+\infty} \:{S}_{{n}} \\ $$
Commented by maxmathsup by imad last updated on 10/Aug/18
we have S_n =Σ_(k=1) ^n    (1/k^(1/3) )   the function  t→(1/x^(1/3) ) is decreasing so    ∫_k ^(k+1)   (dt/t^(1/3) ) ≤   (1/k^(1/3) ) ≤  ∫_(k−1) ^k   (dt/t^(1/3) ) ⇒ Σ_(k=2) ^n   ∫_k ^(k+1)  (dt/t^(1/3) ) ≤ Σ_(k=2) ^n   (1/k^(1/3) ) ≤ Σ_(k=2) ^n  ∫_(k−1) ^k   (dt/t^(1/3) )  ⇒  ∫_2 ^(n+1)   t^(−(1/3))  dt ≤  S_n −1 ≤  ∫_1 ^n    t^(−(1/3))  dt ⇒  [  (3/2) t^(2/3) ]_2 ^(n+1)  ≤ S_n −1 ≤ [ (3/2) t^(2/3) ]_1 ^n  ⇒(3/2){ (n+1)^(2/3)  −2^(2/3) }≤ S_n −1  ≤ (3/2){  n^(2/3)  −1}⇒ S_n  ≥ 1 +(3/2)(n+1)^(2/3)  −(3/2) 2^(2/3)  →+∞(n→+∞) ⇒  lim_(n→+∞)   S_n =+∞ .
$${we}\:{have}\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\frac{\mathrm{1}}{{k}^{\frac{\mathrm{1}}{\mathrm{3}}} }\:\:\:{the}\:{function}\:\:{t}\rightarrow\frac{\mathrm{1}}{{x}^{\frac{\mathrm{1}}{\mathrm{3}}} }\:{is}\:{decreasing}\:{so}\: \\ $$$$\:\int_{{k}} ^{{k}+\mathrm{1}} \:\:\frac{{dt}}{{t}^{\frac{\mathrm{1}}{\mathrm{3}}} }\:\leqslant\:\:\:\frac{\mathrm{1}}{{k}^{\frac{\mathrm{1}}{\mathrm{3}}} }\:\leqslant\:\:\int_{{k}−\mathrm{1}} ^{{k}} \:\:\frac{{dt}}{{t}^{\frac{\mathrm{1}}{\mathrm{3}}} }\:\Rightarrow\:\sum_{{k}=\mathrm{2}} ^{{n}} \:\:\int_{{k}} ^{{k}+\mathrm{1}} \:\frac{{dt}}{{t}^{\frac{\mathrm{1}}{\mathrm{3}}} }\:\leqslant\:\sum_{{k}=\mathrm{2}} ^{{n}} \:\:\frac{\mathrm{1}}{{k}^{\frac{\mathrm{1}}{\mathrm{3}}} }\:\leqslant\:\sum_{{k}=\mathrm{2}} ^{{n}} \:\int_{{k}−\mathrm{1}} ^{{k}} \:\:\frac{{dt}}{{t}^{\frac{\mathrm{1}}{\mathrm{3}}} } \\ $$$$\Rightarrow\:\:\int_{\mathrm{2}} ^{{n}+\mathrm{1}} \:\:{t}^{−\frac{\mathrm{1}}{\mathrm{3}}} \:{dt}\:\leqslant\:\:{S}_{{n}} −\mathrm{1}\:\leqslant\:\:\int_{\mathrm{1}} ^{{n}} \:\:\:{t}^{−\frac{\mathrm{1}}{\mathrm{3}}} \:{dt}\:\Rightarrow \\ $$$$\left[\:\:\frac{\mathrm{3}}{\mathrm{2}}\:{t}^{\frac{\mathrm{2}}{\mathrm{3}}} \right]_{\mathrm{2}} ^{{n}+\mathrm{1}} \:\leqslant\:{S}_{{n}} −\mathrm{1}\:\leqslant\:\left[\:\frac{\mathrm{3}}{\mathrm{2}}\:{t}^{\frac{\mathrm{2}}{\mathrm{3}}} \right]_{\mathrm{1}} ^{{n}} \:\Rightarrow\frac{\mathrm{3}}{\mathrm{2}}\left\{\:\left({n}+\mathrm{1}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} \:−\mathrm{2}^{\frac{\mathrm{2}}{\mathrm{3}}} \right\}\leqslant\:{S}_{{n}} −\mathrm{1} \\ $$$$\leqslant\:\frac{\mathrm{3}}{\mathrm{2}}\left\{\:\:{n}^{\frac{\mathrm{2}}{\mathrm{3}}} \:−\mathrm{1}\right\}\Rightarrow\:{S}_{{n}} \:\geqslant\:\mathrm{1}\:+\frac{\mathrm{3}}{\mathrm{2}}\left({n}+\mathrm{1}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} \:−\frac{\mathrm{3}}{\mathrm{2}}\:\mathrm{2}^{\frac{\mathrm{2}}{\mathrm{3}}} \:\rightarrow+\infty\left({n}\rightarrow+\infty\right)\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} \:\:{S}_{{n}} =+\infty\:. \\ $$
Answered by alex041103 last updated on 09/Aug/18
lim_(n→∞)  S_n =S_∞ =Σ_(k=1) ^∞ (1/k^(1/3) )  We know that k^(1/3) ≤k for kεN  ⇒(1/k^(1/3) )≥(1/k)  ⇒S_∞ >Σ_(k=1) ^∞ (1/k)=s_∞   As we know s_∞  doesn′t converge.  ⇒S_∞  doesn′t converge.
$$\underset{{n}\rightarrow\infty} {{lim}}\:{S}_{{n}} ={S}_{\infty} =\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{1}/\mathrm{3}} } \\ $$$${We}\:{know}\:{that}\:{k}^{\mathrm{1}/\mathrm{3}} \leqslant{k}\:{for}\:{k}\epsilon\mathbb{N} \\ $$$$\Rightarrow\frac{\mathrm{1}}{{k}^{\mathrm{1}/\mathrm{3}} }\geqslant\frac{\mathrm{1}}{{k}} \\ $$$$\Rightarrow{S}_{\infty} >\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}}={s}_{\infty} \\ $$$${As}\:{we}\:{know}\:{s}_{\infty} \:{doesn}'{t}\:{converge}. \\ $$$$\Rightarrow{S}_{\infty} \:{doesn}'{t}\:{converge}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *