Menu Close

let-S-n-k-1-n-1-k-2-n-2-calculate-lim-n-S-n-




Question Number 43546 by maxmathsup by imad last updated on 11/Sep/18
let S_n =Σ_(k=1) ^n    (1/( (√(k^2  +n^2 ))))   calculate lim_(n→+∞)   S_n
letSn=k=1n1k2+n2calculatelimn+Sn
Answered by behi83417@gmail.com last updated on 12/Sep/18
S_n =Σ_1 ^n (1/n).(1/( (√(1+((k/n))^2 ))))=∫_0 ^1  (dx/( (√(1+x^2 ))))=  =ln(x+(√(1+x^2 )))_0 ^1 =ln((√2)+1).
Sn=1n1n.11+(kn)2=01dx1+x2==ln(x+1+x2)01=ln(2+1).
Commented by maxmathsup by imad last updated on 12/Sep/18
cha7gement x =tanθ give ∫_0 ^1    (dx/( (√(1+x^2 )))) =∫_0 ^(π/4)   ((1+tan^2 θ)/( (√(1+tan^2 θ))))dθ  = ∫_0 ^(π/4)  (√(1+tan^2 θ))= ∫_0 ^(π/4)  (dθ/(cosθ)) =_(tan((θ/2))=u)    ∫_0 ^((√2)−1)    (1/((1−t^2 )/(1+t^2 ))) ((2du)/(1+u^2 ))  = ∫_0 ^((√2)−1)   {(1/(1−u)) +(1/(1+u))}du =[ln∣((1+u)/(1−u))∣]_0 ^((√2)−1)  =ln∣ ((√2)/(2−(√2)))∣  =ln((1/( (√2)−1)))=ln(1+(√2))  ⇒lim_(n→+∞)  S_n =ln(1+(√2))   another way ∫_0 ^1   (dx/( (√(1+x^2 )))) =[argsh(x)]_0 ^1  =[ln(x+(√(1+x^2 )))]_0 ^1  =ln(1+(√2)).
cha7gementx=tanθgive01dx1+x2=0π41+tan2θ1+tan2θdθ=0π41+tan2θ=0π4dθcosθ=tan(θ2)=u02111t21+t22du1+u2=021{11u+11+u}du=[ln1+u1u]021=ln222=ln(121)=ln(1+2)limn+Sn=ln(1+2)anotherway01dx1+x2=[argsh(x)]01=[ln(x+1+x2)]01=ln(1+2).

Leave a Reply

Your email address will not be published. Required fields are marked *