Menu Close

let-S-n-k-1-n-1-k-k-1-calculate-S-n-interms-of-H-n-2-find-lim-n-S-n-3-let-W-n-1-i-lt-j-n-1-i-j-i-j-prove-that-W-n-is-convergent-and-calculste-its-lim




Question Number 40067 by abdo mathsup 649 cc last updated on 15/Jul/18
let  S_n = Σ_(k=1) ^n   (((−1)^k )/k)  1) calculate S_n  interms of H_n   2) find lim_(n→+∞)  S_n   3) let W_n = Σ_(1≤i<j≤n) (((−1)^(i+j) )/(i.j))  prove that (W_n ) is convergent and calculste its  limit.
letSn=k=1n(1)kk1)calculateSnintermsofHn2)findlimn+Sn3)letWn=1i<jn(1)i+ji.jprovethat(Wn)isconvergentandcalculsteitslimit.
Commented by abdo mathsup 649 cc last updated on 17/Jul/18
S_n = Σ_(k=1and k=2p) ^n   (((−1)^k )/k)   +Σ_(k=1 and k=2p+1) ^n    (((−1)^k )/k)  =Σ_(p=1) ^([(n/2)])   (1/(2p))    − Σ_(p=0) ^([((n−1)/2)])    (1/(2p+1))  but   Σ_(p=1) ^([(n/2)])  (1/(2p)) =(1/2) H_([(n/2)])   Σ_(p=0) ^([((n−1)/2)])   (1/(2p+1)) =1 +(1/3)  + (1/5) +....+(1/(2[((n−1)/2)]+1))  =1+(1/2) +(1/3) +(1/4) +(1/5) +.....+(1/(2[((n−1)/2)])) +(1/(2[((n−1)/2)]+1))  −(1/2) −(1/4) −....−(1/(2[((n−1)/2)]))  =H_(2[((n−1)/2)]+1)   −(1/2) H_([((n−1)/2)])      ⇒  S_n = (1/2) H_([(n/2)])   −H_(2[((n−1)/2)]+1)   +(1/2) H_([((n−1)/2)])   2) we have S_(2n)  =(1/2) H_n   +(1/2) H_(n−1)   −H_(2n−1)   S_(2n) =(1/2){  ln(n) +γ  +ln(n−1) +γ +o((1/n))}  −ln(2n−1)−γ  +o((1/n))  =(1/2)ln(n^2 −n)−ln(2n−1) +o((1/n))  =ln(((√(n^2 −n))/(2n−1))) +o((1/n)) ⇒lim_(n→+∞)   S_(2n)  = −ln(2)  also  S_(2n+1)   =(1/2) H_n    −H_(2n+1)   +(1/2) H_n   = H_n  −H_(2n+1) = ln(n) +γ +o((1/n)) −ln(2n+1)−γ −o((1/n))  =ln((n/(2n+1))) +o((1/n))  ⇒lim_(n→+∞)   S_(2n+1)  = −ln(2)  from that we can conclude that   lim_(n→+∞)   S_n =−ln(2).
Sn=k=1andk=2pn(1)kk+k=1andk=2p+1n(1)kk=p=1[n2]12pp=0[n12]12p+1butp=1[n2]12p=12H[n2]p=0[n12]12p+1=1+13+15+.+12[n12]+1=1+12+13+14+15+..+12[n12]+12[n12]+11214.12[n12]=H2[n12]+112H[n12]Sn=12H[n2]H2[n12]+1+12H[n12]2)wehaveS2n=12Hn+12Hn1H2n1S2n=12{ln(n)+γ+ln(n1)+γ+o(1n)}ln(2n1)γ+o(1n)=12ln(n2n)ln(2n1)+o(1n)=ln(n2n2n1)+o(1n)limn+S2n=ln(2)alsoS2n+1=12HnH2n+1+12Hn=HnH2n+1=ln(n)+γ+o(1n)ln(2n+1)γo(1n)=ln(n2n+1)+o(1n)limn+S2n+1=ln(2)fromthatwecanconcludethatlimn+Sn=ln(2).
Commented by abdo mathsup 649 cc last updated on 17/Jul/18
3) we have S_n ^2  =(Σ_(k=1) ^n  (((−1)^k )/k))^2   =Σ_(k=1) ^n   (1/k^2 )   +2  Σ_(1≤i<j≤n)   (((−1)^i (−1)^j )/(i.j))  =Σ_(k=1) ^n  (1/k^2 ) +2W_n   ⇒ 2W_n =S_n ^2   −Σ_(k=1) ^n  (1/k^2 )  ⇒ lim_(n→+∞)  W_n = (1/2)( (−ln2)^2  −(π^2 /6))  =(1/2)( (ln(2))^2  −(π^2 /6)) .
3)wehaveSn2=(k=1n(1)kk)2=k=1n1k2+21i<jn(1)i(1)ji.j=k=1n1k2+2Wn2Wn=Sn2k=1n1k2limn+Wn=12((ln2)2π26)=12((ln(2))2π26).

Leave a Reply

Your email address will not be published. Required fields are marked *