let-S-n-k-1-n-1-k-k-1-calculate-S-n-interms-of-H-n-2-find-lim-n-S-n-3-let-W-n-1-i-lt-j-n-1-i-j-i-j-prove-that-W-n-is-convergent-and-calculste-its-lim Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 40067 by abdo mathsup 649 cc last updated on 15/Jul/18 letSn=∑k=1n(−1)kk1)calculateSnintermsofHn2)findlimn→+∞Sn3)letWn=∑1⩽i<j⩽n(−1)i+ji.jprovethat(Wn)isconvergentandcalculsteitslimit. Commented by abdo mathsup 649 cc last updated on 17/Jul/18 Sn=∑k=1andk=2pn(−1)kk+∑k=1andk=2p+1n(−1)kk=∑p=1[n2]12p−∑p=0[n−12]12p+1but∑p=1[n2]12p=12H[n2]∑p=0[n−12]12p+1=1+13+15+….+12[n−12]+1=1+12+13+14+15+…..+12[n−12]+12[n−12]+1−12−14−….−12[n−12]=H2[n−12]+1−12H[n−12]⇒Sn=12H[n2]−H2[n−12]+1+12H[n−12]2)wehaveS2n=12Hn+12Hn−1−H2n−1S2n=12{ln(n)+γ+ln(n−1)+γ+o(1n)}−ln(2n−1)−γ+o(1n)=12ln(n2−n)−ln(2n−1)+o(1n)=ln(n2−n2n−1)+o(1n)⇒limn→+∞S2n=−ln(2)alsoS2n+1=12Hn−H2n+1+12Hn=Hn−H2n+1=ln(n)+γ+o(1n)−ln(2n+1)−γ−o(1n)=ln(n2n+1)+o(1n)⇒limn→+∞S2n+1=−ln(2)fromthatwecanconcludethatlimn→+∞Sn=−ln(2). Commented by abdo mathsup 649 cc last updated on 17/Jul/18 3)wehaveSn2=(∑k=1n(−1)kk)2=∑k=1n1k2+2∑1⩽i<j⩽n(−1)i(−1)ji.j=∑k=1n1k2+2Wn⇒2Wn=Sn2−∑k=1n1k2⇒limn→+∞Wn=12((−ln2)2−π26)=12((ln(2))2−π26). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: d-2-y-dx-2-4-dy-dx-y-a-sin-2x-Next Next post: prove-by-mathematical-induction-2-3-4-3-6-3-8-3-2n-3-2n-2-n-1-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.