Menu Close

let-S-n-k-1-n-e-k-n-n-find-lim-n-S-n-




Question Number 43537 by abdo.msup.com last updated on 11/Sep/18
let S_n =Σ_(k=1) ^n   (e^(k/n) /n)  find lim_(n→+∞) S_n
$${let}\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{{e}^{\frac{{k}}{{n}}} }{{n}} \\ $$$${find}\:{lim}_{{n}\rightarrow+\infty} {S}_{{n}} \\ $$
Commented by maxmathsup by imad last updated on 29/Sep/18
lim_(n→+∞)  S_n = lim_(n→+∞)  (1/n) Σ_(k=1) ^n   e^(k/n)   =∫_0 ^1  e^x dx= e−1 .
$${lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} =\:{lim}_{{n}\rightarrow+\infty} \:\frac{\mathrm{1}}{{n}}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:{e}^{\frac{{k}}{{n}}} \:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{{x}} {dx}=\:{e}−\mathrm{1}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *