Question Number 48493 by maxmathsup by imad last updated on 24/Nov/18
$${let}\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{{k}^{\mathrm{2}} }{\left(\mathrm{2}{k}−\mathrm{1}\right)\left(\mathrm{2}{k}+\mathrm{1}\right)} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{S}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} \\ $$
Commented by maxmathsup by imad last updated on 25/Nov/18
$$\left.\mathrm{1}\right)\:{first}\:{let}\:{decompose}\:{F}\left({x}\right)=\frac{{x}^{\mathrm{2}} }{\left(\mathrm{2}{x}−\mathrm{1}\right)\left(\mathrm{2}{x}+\mathrm{1}\right)}\:\Rightarrow \\ $$$${F}\left({x}\right)=\frac{{x}}{\mathrm{4}}\left(\frac{\mathrm{1}}{\mathrm{2}{x}−\mathrm{1}}\:+\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{1}}\right)\:=\frac{\mathrm{1}}{\mathrm{8}}\left(\frac{\mathrm{2}{x}}{\mathrm{2}{x}−\mathrm{1}}\:+\frac{\mathrm{2}{x}}{\mathrm{2}{x}+\mathrm{1}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\left(\frac{\mathrm{2}{x}−\mathrm{1}+\mathrm{1}}{\mathrm{2}{x}−\mathrm{1}}\:+\frac{\mathrm{2}{x}+\mathrm{1}−\mathrm{1}}{\mathrm{2}{x}+\mathrm{1}}\right)=\frac{\mathrm{1}}{\mathrm{8}}\left(\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{x}−\mathrm{1}}\:+\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{1}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{8}}\left(\frac{\mathrm{1}}{\mathrm{2}{x}−\mathrm{1}}\:−\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{1}}\right)\:\Rightarrow{S}_{{n}} =\frac{{n}}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{8}}\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{2}{k}−\mathrm{1}}\:−\frac{\mathrm{1}}{\mathrm{8}}\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}} \\ $$$${but}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}}\:=_{{k}+\mathrm{1}={j}} \:\:\:\sum_{{j}=\mathrm{2}} ^{{n}+\mathrm{1}} \:\:\frac{\mathrm{1}}{\mathrm{2}{j}−\mathrm{1}}\:=\sum_{{j}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{2}{j}−\mathrm{1}}\:−\mathrm{1}\:+\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\:\Rightarrow \\ $$$${S}_{{n}} =\frac{{n}}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{8}}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{2}{k}−\mathrm{1}}\:−\frac{\mathrm{1}}{\mathrm{8}}\left(\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{2}{k}−\mathrm{1}}\:−\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\right) \\ $$$$=\frac{{n}}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{8}}\:−\frac{\mathrm{1}}{\mathrm{8}\left(\mathrm{2}{n}+\mathrm{1}\right)} \\ $$$$\left.\mathrm{2}\right)\:{its}\:{clear}\:{that}\:{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} =+\infty\:. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 24/Nov/18
$$\left.\mathrm{1}\right)\frac{{k}^{\mathrm{2}} }{\left(\mathrm{2}{k}+\mathrm{1}\right)\left(\mathrm{2}{k}−\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left[\frac{\mathrm{4}{k}^{\mathrm{2}} −\mathrm{1}+\mathrm{1}}{\left(\mathrm{2}{k}+\mathrm{1}\right)\left(\mathrm{2}{k}−\mathrm{1}\right)}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}×\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)−\left(\mathrm{2}{k}−\mathrm{1}\right)}{\left(\mathrm{2}{k}+\mathrm{1}\right)\left(\mathrm{2}{k}−\mathrm{1}\right.}\right] \\ $$$${T}_{{k}} =\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{8}}\left[\frac{\mathrm{1}}{\mathrm{2}{k}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}}\right] \\ $$$${T}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{8}}\left[\frac{\mathrm{1}}{\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{3}}\right] \\ $$$${T}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{8}}\left[\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{5}}\right] \\ $$$${T}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{8}}\left[\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{7}}\right] \\ $$$$… \\ $$$$… \\ $$$${T}_{{n}} =\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{8}}\left[\frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\right] \\ $$$${add}\:{them} \\ $$$${S}_{{n}} .=\frac{{n}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{8}}\left[\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\right] \\ $$$${when}\:{n}\rightarrow\infty\:\: \\ $$$${S}_{{n}} =\infty+\frac{\mathrm{1}}{\mathrm{8}}\left[\mathrm{1}−\mathrm{0}\right]=\infty \\ $$$${plscheck}… \\ $$$$ \\ $$
Commented by maxmathsup by imad last updated on 25/Nov/18
$${correct}\:{answer}\:{thanks}. \\ $$
Answered by ajfour last updated on 25/Nov/18
$$\:{S}_{{n}} =\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{k}^{\mathrm{2}} }{\left(\mathrm{2}{k}−\mathrm{1}\right)\left(\mathrm{2}{k}+\mathrm{1}\right)}\: \\ $$$$\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{4}}\Sigma\:\frac{{k}\left[\left(\mathrm{2}{k}+\mathrm{1}\right)+\left(\mathrm{2}{k}−\mathrm{1}\right)\right]}{\left(\mathrm{2}{k}−\mathrm{1}\right)\left(\mathrm{2}{k}+\mathrm{1}\right)} \\ $$$$\:\:\:\mathrm{4}{S}_{{n}} \:=\:\Sigma\frac{{k}}{\mathrm{2}{k}−\mathrm{1}}+\Sigma\frac{{k}}{\mathrm{2}{k}+\mathrm{1}} \\ $$$$\mathrm{8}{S}_{{n}} \:=\:\Sigma\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{k}−\mathrm{1}}\right)+\Sigma\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}}\right) \\ $$$$\:\:\:\:\:\:\:=\:\mathrm{2}{n}+\left(\frac{\mathrm{1}}{\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{3}}+..+\frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\left(\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}+…+\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\right) \\ $$$$\:\:\:\:\:\:\:\:{S}_{{n}} \:=\:\frac{{n}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{8}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\right)\:. \\ $$
Commented by maxmathsup by imad last updated on 25/Nov/18
$${correct}\:{answer}\:{thanks} \\ $$