Menu Close

let-S-n-k-1-n-k-2-2k-1-2k-1-1-determine-S-n-interms-of-n-2-find-lim-n-S-n-




Question Number 48493 by maxmathsup by imad last updated on 24/Nov/18
let S_n =Σ_(k=1) ^n   (k^2 /((2k−1)(2k+1)))  1) determine S_n  interms of n  2) find lim_(n→+∞)  S_n
letSn=k=1nk2(2k1)(2k+1)1)determineSnintermsofn2)findlimn+Sn
Commented by maxmathsup by imad last updated on 25/Nov/18
1) first let decompose F(x)=(x^2 /((2x−1)(2x+1))) ⇒  F(x)=(x/4)((1/(2x−1)) +(1/(2x+1))) =(1/8)(((2x)/(2x−1)) +((2x)/(2x+1)))  =(1/8)(((2x−1+1)/(2x−1)) +((2x+1−1)/(2x+1)))=(1/8)( 1+(1/(2x−1)) +1−(1/(2x+1)))  =(1/4) +(1/8)((1/(2x−1)) −(1/(2x+1))) ⇒S_n =(n/4) +(1/8)Σ_(k=1) ^n  (1/(2k−1)) −(1/8)Σ_(k=1) ^n  (1/(2k+1))  but Σ_(k=1) ^n  (1/(2k+1)) =_(k+1=j)    Σ_(j=2) ^(n+1)   (1/(2j−1)) =Σ_(j=1) ^n  (1/(2j−1)) −1 +(1/(2n+1)) ⇒  S_n =(n/4) +(1/8) Σ_(k=1) ^n  (1/(2k−1)) −(1/8)( Σ_(k=1) ^n  (1/(2k−1)) −1+(1/(2n+1)))  =(n/4) +(1/8) −(1/(8(2n+1)))  2) its clear that lim_(n→+∞)  S_n =+∞ .
1)firstletdecomposeF(x)=x2(2x1)(2x+1)F(x)=x4(12x1+12x+1)=18(2x2x1+2x2x+1)=18(2x1+12x1+2x+112x+1)=18(1+12x1+112x+1)=14+18(12x112x+1)Sn=n4+18k=1n12k118k=1n12k+1butk=1n12k+1=k+1=jj=2n+112j1=j=1n12j11+12n+1Sn=n4+18k=1n12k118(k=1n12k11+12n+1)=n4+1818(2n+1)2)itsclearthatlimn+Sn=+.
Answered by tanmay.chaudhury50@gmail.com last updated on 24/Nov/18
1)(k^2 /((2k+1)(2k−1)))  =(1/4)[((4k^2 −1+1)/((2k+1)(2k−1)))]  =(1/4)[1+(1/2)×(((2k+1)−(2k−1))/((2k+1)(2k−1))]  T_k =(1/4)+(1/8)[(1/(2k−1))−(1/(2k+1))]  T_1 =(1/4)+(1/8)[(1/1)−(1/3)]  T_2 =(1/4)+(1/8)[(1/3)−(1/5)]  T_3 =(1/4)+(1/8)[(1/5)−(1/7)]  ...  ...  T_n =(1/4)+(1/8)[(1/(2n−1))−(1/(2n+1))]  add them  S_n .=(n/4)+(1/8)[1−(1/(2n+1))]  when n→∞    S_n =∞+(1/8)[1−0]=∞  plscheck...
1)k2(2k+1)(2k1)=14[4k21+1(2k+1)(2k1)]=14[1+12×(2k+1)(2k1)(2k+1)(2k1]Tk=14+18[12k112k+1]T1=14+18[1113]T2=14+18[1315]T3=14+18[1517]Tn=14+18[12n112n+1]addthemSn.=n4+18[112n+1]whennSn=+18[10]=plscheck
Commented by maxmathsup by imad last updated on 25/Nov/18
correct answer thanks.
correctanswerthanks.
Answered by ajfour last updated on 25/Nov/18
 S_n = Σ_(k=1) ^n (k^2 /((2k−1)(2k+1)))        = (1/4)Σ ((k[(2k+1)+(2k−1)])/((2k−1)(2k+1)))     4S_n  = Σ(k/(2k−1))+Σ(k/(2k+1))  8S_n  = Σ(1+(1/(2k−1)))+Σ(1−(1/(2k+1)))         = 2n+((1/1)+(1/3)+..+(1/(2n−1)))                   −((1/3)+(1/5)+...+(1/(2n+1)))          S_n  = (n/4)+(1/8)(1−(1/(2n+1))) .
Sn=nk=1k2(2k1)(2k+1)=14Σk[(2k+1)+(2k1)](2k1)(2k+1)4Sn=Σk2k1+Σk2k+18Sn=Σ(1+12k1)+Σ(112k+1)=2n+(11+13+..+12n1)(13+15++12n+1)Sn=n4+18(112n+1).
Commented by maxmathsup by imad last updated on 25/Nov/18
correct answer thanks
correctanswerthanks

Leave a Reply

Your email address will not be published. Required fields are marked *