Menu Close

Let-S-n-n-2-20n-12-n-a-positive-integer-What-is-the-sum-of-all-possible-values-of-n-for-which-S-n-is-a-perfect-square-




Question Number 19332 by Tinkutara last updated on 09/Aug/17
Let S_n  = n^2  + 20n + 12, n a positive  integer. What is the sum of all possible  values of n for which S_n  is a perfect  square?
LetSn=n2+20n+12,napositiveinteger.WhatisthesumofallpossiblevaluesofnforwhichSnisaperfectsquare?
Commented by mrW1 last updated on 09/Aug/17
Σn=3+13=16
Σn=3+13=16
Answered by mrW1 last updated on 09/Aug/17
n^2  + 20n + 12=m^2   n^2  + 20n + 12−m^2 =0  ⇒n=((−20±(√(20^2 −4(12−m^2 ))))/2)=−10±(√(88+m^2 ))  88+m^2 =k^2   k^2 −m^2 =88  (k−m)(k+m)=88=a×b  88=2^3 ×11  a×b=1×88=2×44=4×22=8×11  k−m=a  k+m=b  ⇒k=((a+b)/2)  for k to be integer, a and b must be  both odd or both even.  ⇒k=((2+44)/2)=23  ⇒k=((4+22)/2)=13  ⇒n=−10±23=−33, 13  ⇒n=−10±13=−23, 3  sum of +ve n=3+13=16
n2+20n+12=m2n2+20n+12m2=0n=20±2024(12m2)2=10±88+m288+m2=k2k2m2=88(km)(k+m)=88=a×b88=23×11a×b=1×88=2×44=4×22=8×11km=ak+m=bk=a+b2forktobeinteger,aandbmustbebothoddorbotheven.k=2+442=23k=4+222=13n=10±23=33,13n=10±13=23,3sumof+ven=3+13=16
Commented by Tinkutara last updated on 09/Aug/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *