Menu Close

let-S-n-p-k-1-n-1-k-p-find-a-equivalent-of-S-n-p-when-n-p-integr-1-




Question Number 42098 by abdo.msup.com last updated on 17/Aug/18
let S_(n,p) =Σ_(k=1) ^n   (1/( (√(k+p))))  find a equivalent of S_(n,p)  when n→+∞  p integr ≥1.
letSn,p=k=1n1k+pfindaequivalentofSn,pwhenn+pintegr1.
Commented by maxmathsup by imad last updated on 18/Aug/18
the sequence ((1/( (√k))))_(k≥1)   is decreasing  ⇒  ∫_k ^(k+1)   (dt/( (√(t+p)))) ≤ (1/( (√(k+p)))) ≤ ∫_(k−1) ^k  (dt/( (√(t+p)))) ⇒  Σ_(k=1) ^n  ∫_k ^(k+1)  (dt/( (√(t+p)))) ≤Σ_(k=1) ^n    (1/( (√(k+p)))) ≤ Σ_(k=1) ^n  ∫_(k−1) ^k  (dt/( (√(t+p)))) ⇒  ∫_1 ^(n+1)   (dt/( (√(t+p)))) ≤ S_(n,p)    ≤ ∫_0 ^n   (dt/( (√(t+p)))) ⇒ [2(√(t+p))]_1 ^(n+1)  ≤S_(n,p)  ≤[2(√(t+p))]_0 ^n  ⇒  2(√(n+1+p)) −2(√(p+1)) ≤ S_(n,p)   ≤ 2(√(n+p))  −2(√(p )) ⇒  ((2(√(n+1+p))−2(√(p+1)))/(2(√(n+p)))) ≤   (S_(n,p) /(2(√(n+p)))) ≤  ((2(√(n+p)) −2(√p))/(2(√(n+p)))) ⇒  (√(1+(1/(n+p))))−(√((p+1)/(n+p)))  ≤  (S_(n,p) /(2(√(n+p)))) ≤  1−(√(p/(n+p)))   but  lim_(n→+∞ ) (√(1+(1/(n+p))))−(√((p+1)/(n+1))) =1 and lim_(n→+∞)  1−(√(p/(n+p))) =1 ⇒     S_(n,p)    ∼  2(√(n+p))    (n→+∞  and p fixed)
thesequence(1k)k1isdecreasingkk+1dtt+p1k+pk1kdtt+pk=1nkk+1dtt+pk=1n1k+pk=1nk1kdtt+p1n+1dtt+pSn,p0ndtt+p[2t+p]1n+1Sn,p[2t+p]0n2n+1+p2p+1Sn,p2n+p2p2n+1+p2p+12n+pSn,p2n+p2n+p2p2n+p1+1n+pp+1n+pSn,p2n+p1pn+pbutlimn+1+1n+pp+1n+1=1andlimn+1pn+p=1Sn,p2n+p(n+andpfixed)

Leave a Reply

Your email address will not be published. Required fields are marked *