Menu Close

let-S-n-x-k-0-n-e-k-sin-k-2-x-1-determine-2-sequence-U-n-x-and-V-n-x-wich-verify-U-n-S-n-V-n-2-let-S-lim-n-S-x-study-the-convergence-of-S-




Question Number 63651 by mathmax by abdo last updated on 06/Jul/19
let S_n (x)=Σ_(k=0) ^n  e^(−k) sin(k^2 x)  1) determine 2 sequence  U_n (x) and V_n (x) wich verify U_n ≤ S_n ≤ V_n   2) let  S =lim_(n→+∞)  S(x)  study the convergence of S.
$${let}\:{S}_{{n}} \left({x}\right)=\sum_{{k}=\mathrm{0}} ^{{n}} \:{e}^{−{k}} {sin}\left({k}^{\mathrm{2}} {x}\right) \\ $$$$\left.\mathrm{1}\right)\:{determine}\:\mathrm{2}\:{sequence}\:\:{U}_{{n}} \left({x}\right)\:{and}\:{V}_{{n}} \left({x}\right)\:{wich}\:{verify}\:{U}_{{n}} \leqslant\:{S}_{{n}} \leqslant\:{V}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{let}\:\:{S}\:={lim}_{{n}\rightarrow+\infty} \:{S}\left({x}\right)\:\:{study}\:{the}\:{convergence}\:{of}\:{S}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *