Menu Close

let-S-p-n-0-cos-npi-p-and-W-p-n-0-sin-npi-p-with-p-natural-integr-not0-1-find-a-simple-form-of-S-p-and-W-p-2-find-the-value-of-n-0-cos-npi-3-and-n-0-




Question Number 42285 by maxmathsup by imad last updated on 22/Aug/18
let  S_p =Σ_(n=0) ^∞   cos(((nπ)/p))  and  W_p  =Σ_(n=0) ^∞  sin(((nπ)/p)) with p natural integr not0  1) find a simple form of S_p  and W_p   2) find the value of Σ_(n=0) ^∞  cos(((nπ)/3)) and Σ_(n=0) ^∞  sin(((nπ)/3))  3) find the value of  Σ_(n=0) ^∞  cos(((nπ)/5)) and Σ_(n=0) ^∞  sin(((nπ)/5))  4) calculate  A =Σ_(n=0) ^∞  cos^2 (((nπ)/3)) and B =Σ_(n=0) ^∞  sin^2 (((nπ)/3)) .
letSp=n=0cos(nπp)andWp=n=0sin(nπp)withpnaturalintegrnot01)findasimpleformofSpandWp2)findthevalueofn=0cos(nπ3)andn=0sin(nπ3)3)findthevalueofn=0cos(nπ5)andn=0sin(nπ5)4)calculateA=n=0cos2(nπ3)andB=n=0sin2(nπ3).
Commented by maxmathsup by imad last updated on 23/Aug/18
1) we have S_p  +iW_p =Σ_(n=0) ^∞  e^(i((nπ)/p))  =Σ_(n=0) ^∞  (e^((iπ)/p) )^n   =(1/(1−e^(i(π/p)) ))  =(1/(1−cos((π/p))−isin((π/p)))) =(1/(2sin^2 ((π/(2p))) −2isin((π/(2p)))cos((π/(2p)))))  = (1/(−2isin((π/(2p)))(cos((π/(2p)))+isin((π/(2p))))))  =(i/(2 sin((π/(2p))))) e^(−((iπ)/(2p)))   =(i/(2sin((π/(2p))))){cos((π/(2p)))−i sin((π/(2p)))} =(i/2)cotan((π/(2p))) +(1/2) ⇒  S_p =(1/2)  and W_p =(1/2)cotan((π/(2p)))  2) Σ_(n=0) ^∞  cos(((nπ)/3)) =S_3 =(1/2)  and  Σ_(n=0) ^∞  sin(((nπ)/3)) =W_3 =(1/2)cotan((π/6))  W_3 =(1/2) (√3)=((√3)/2)  3) Σ_(n=0) ^∞  cos(((nπ)/5)) =S_5 =(1/2)  and  Σ_(n=0) ^∞  sin(((nπ)/5)) =W_5 =(1/2)cotan((π/(10)))
1)wehaveSp+iWp=n=0einπp=n=0(eiπp)n=11eiπp=11cos(πp)isin(πp)=12sin2(π2p)2isin(π2p)cos(π2p)=12isin(π2p)(cos(π2p)+isin(π2p))=i2sin(π2p)eiπ2p=i2sin(π2p){cos(π2p)isin(π2p)}=i2cotan(π2p)+12Sp=12andWp=12cotan(π2p)2)n=0cos(nπ3)=S3=12andn=0sin(nπ3)=W3=12cotan(π6)W3=123=323)n=0cos(nπ5)=S5=12andn=0sin(nπ5)=W5=12cotan(π10)
Commented by maxmathsup by imad last updated on 23/Aug/18
4) the Q is claculate A_n =Σ_(k=0) ^n  cos^2 (((kπ)/3)) and B_n =Σ_(k=0) ^n  sin^2 (((kπ)/3)).
4)theQisclaculateAn=k=0ncos2(kπ3)andBn=k=0nsin2(kπ3).

Leave a Reply

Your email address will not be published. Required fields are marked *