Menu Close

let-s-put-H-n-1-2-1-3-1-n-1-and-U-n-H-n-ln-n-prove-that-U-n-is-convergent-to-a-number-s-wish-verify-0-lt-s-lt-1-s-is-named-number-of-Euler-




Question Number 25852 by abdo imad last updated on 15/Dec/17
let s put H_n  = 1 +2^(−1) +3^(−1) +....+n^(−1)  and   U_n = H_n  −ln(n)   prove that U_n  is convergent to a number  s wish verify  0<s<1   (s is named number of Euler )
letsputHn=1+21+31+.+n1andUn=Hnln(n)provethatUnisconvergenttoanumberswishverify0<s<1(sisnamednumberofEuler)
Commented by moxhix last updated on 16/Dec/17
U_n =Σ_(k=1) ^n (1/k)−∫_1 ^n (1/x)dx      =Σ_(k=1) ^n (1/k)−Σ_(k=1) ^(n−1) ∫_k ^(k+1) (1/x)dx      =(1/n)+Σ_(k=1) ^(n−1) ((1/k)−∫_k ^(k+1) (1/x)dx)      =(1/n)+Σ_(k=1) ^(n−1) (∫_k ^(k+1) (1/k)−(1/x)dx)      >((1/1)−∫_1 ^2 (1/x)dx)      =1−ln(2)  ∴U_n >1−ln(2)  (∀n≥2)    U_n =Σ_(k=1) ^n (1/k)−∫_1 ^n (1/x)dx      =Σ_(k=1) ^n (1/k)−Σ_(k=2) ^n ∫_(k−1) ^k (1/x)dx      =1+Σ_(k=2) ^n ((1/k)−∫_(k−1) ^k (1/x)dx)      =1+Σ_(k=2) ^n (∫_(k−1) ^k (1/k)−(1/x)dx)      <1+∫_1 ^2 (1/2)−(1/x)dx       =(3/2)−ln(2)  ∴U_n <(3/2)−ln(2)  (∀n≥2)    U_(n+1) −U_n =(1/(n+1))−∫_n ^(n+1) (1/x)dx      =∫_n ^(n+1) (1/(n+1))−(1/x)dx      <0  ∴U_(n+1) <U_n     ↓  1−ln(2)<...<U_(n+1) <U_n <...<U_3 <U_2 <(3/2)−ln(2)  ∴∃s∈Rs.t. (s=lim_(n→∞) U_n   AND 0<1−ln(2)≤s≤(3/2)−ln(2)<1)
Un=nk=11k1n1xdx=nk=11kn1k=1kk+11xdx=1n+n1k=1(1kkk+11xdx)=1n+n1k=1(kk+11k1xdx)>(11121xdx)=1ln(2)Un>1ln(2)(n2)Un=nk=11k1n1xdx=nk=11knk=2k1k1xdx=1+nk=2(1kk1k1xdx)=1+nk=2(k1k1k1xdx)<1+12121xdx=32ln(2)Un<32ln(2)(n2)Un+1Un=1n+1nn+11xdx=nn+11n+11xdx<0Un+1<Un1ln(2)<<Un+1<Un<<U3<U2<32ln(2)Double subscripts: use braces to clarify

Leave a Reply

Your email address will not be published. Required fields are marked *