Question Number 159379 by HongKing last updated on 16/Nov/21

Answered by Ar Brandon last updated on 16/Nov/21
![Σ_(n=0) ^∞ (−(1/3))^(n+1) (1/(n+3))=Σ_(n=0) ^∞ (−(1/3))^(n+1) ∫_0 ^1 x^(n+2) dx =−3Σ_(n=0) ^∞ (−(1/3))^(n+2) ∫_0 ^1 x^(n+2) dx=−3∫_0 ^1 Σ_(n=0) ^∞ (−(x/3))^(n+2) dx =−3∫_0 ^1 ((x^2 /9)/(1+(x/3)))dx=−∫_0 ^1 (x^2 /(3+x))dx=−∫_0 ^1 (((x+3)^2 −6(x+3)+9)/(x+3))dx =−[(x^2 /2)+3x−6x+9ln(x+3)]_0 ^1 =9ln3+(5/2)−9ln4=(5/2)+9ln((3/4))](https://www.tinkutara.com/question/Q159383.png)
Commented by HongKing last updated on 16/Nov/21

Commented by HongKing last updated on 16/Nov/21

Commented by Ar Brandon last updated on 16/Nov/21

Answered by Ar Brandon last updated on 16/Nov/21

Commented by HongKing last updated on 16/Nov/21

Commented by Ar Brandon last updated on 16/Nov/21
You're welcome, Sir.