Menu Close

let-S-x-n-0-f-n-x-with-f-n-x-1-n-n-x-n-x-0-1-prove-that-S-id-defined-calculate-S-1-and-prove-that-x-gt-0-xS-x-S-x-1-1-e-2-prove-that-S-is-C-on-R-3




Question Number 33699 by math khazana by abdo last updated on 22/Apr/18
let S(x)=Σ_(n=0) ^∞  f_n (x)  with f_n (x)= (((−1)^n )/(n!(x+n)))  x∈]0,+∞[  1)  prove that S id defined .calculate S(1) and  prove that ∀x>0  xS(x) −S(x+1) =(1/e)  2) prove that S is C^∞  on R^(+∗)   3) prove that S(x) ∼ (1/x) (x→0^+ ) .
letS(x)=n=0fn(x)withfn(x)=(1)nn!(x+n)x]0,+[1)provethatSiddefined.calculateS(1)andprovethatx>0xS(x)S(x+1)=1e2)provethatSisConR+3)provethatS(x)1x(x0+).
Commented by math khazana by abdo last updated on 29/Apr/18
we have ∣f_n (x)∣= (1/(n!(x+n))) ≤ (1/(n(n!))) but the seSrie  Σ  (1/(n(n!))) is convergent so S is defined on]0,+∞[  S(1)=Σ_(n=0) ^∞  f_n (1) =Σ_(n=0) ^∞   (((−1)^n )/(n!(n+1)))  let w(x) = Σ_(n=0) ^∞    (((−1)^n )/(n!(n+1))) x^(n+1)   w^′ (x) = Σ_(n=0) ^∞   (((−1)^n  x^n )/(n!)) = Σ_(n=0) ^∞   (((−x)^n )/(n!)) =e^(−x)  ⇒  w(x)=−e^(−x)  +λ  we have w(0)=0 =−1 +λ ⇒  λ=1 ⇒w(x)=1−e^(−x)   S(1)=w(1)= 1−(1/e) .  xS(x) −S(x+1)=Σ_(n=0) ^∞   ((x(−1)^n )/(n!(x+n))) −Σ_(n=0) ^∞  (((−1)^n )/(n!(x+n+1)))  =1+Σ_(n=1) ^∞    (((−1)^n )/(n!)) ( ((x+n −n)/(x+n))) −Σ_(n=0) ^∞   (((−1)^n )/(n!(x+n+1)))  =Σ_(n=0) ^∞  (((−1)^n )/(n!)) −Σ_(n=1) ^∞   (((−1)^n )/((n−1)!(x+n))) −Σ_(n=0) ^∞   (((−1)^n )/(n!(x+n+1)))  = (1/e) −Σ_(n=0) ^∞   (((−1)^(n+1) )/(n!(x+n +1))) −Σ_(n=0) ^∞   (((−1)^n )/(n!(x+n+1)))  =(1/e) ⇒ xS(x) −S(x+1) =(1/e)
wehavefn(x)∣=1n!(x+n)1n(n!)buttheseSrieΣ1n(n!)isconvergentsoSisdefinedon]0,+[S(1)=n=0fn(1)=n=0(1)nn!(n+1)letw(x)=n=0(1)nn!(n+1)xn+1w(x)=n=0(1)nxnn!=n=0(x)nn!=exw(x)=ex+λwehavew(0)=0=1+λλ=1w(x)=1exS(1)=w(1)=11e.xS(x)S(x+1)=n=0x(1)nn!(x+n)n=0(1)nn!(x+n+1)=1+n=1(1)nn!(x+nnx+n)n=0(1)nn!(x+n+1)=n=0(1)nn!n=1(1)n(n1)!(x+n)n=0(1)nn!(x+n+1)=1en=0(1)n+1n!(x+n+1)n=0(1)nn!(x+n+1)=1exS(x)S(x+1)=1e
Commented by math khazana by abdo last updated on 29/Apr/18
2) due to uniform convergence and f_n  are C^∞   S will be C^  on ]0,+∞[ and  S^((p)) (x) =Σ_(n=0) ^∞   f_n ^((p)) (x)= Σ_(n=0) ^∞  (((−1)^n )/(n!))  (((−1)^p p!)/((x+n)^(p+1) )) .
2)duetouniformconvergenceandfnareCSwillbeCon]0,+[andS(p)(x)=n=0fn(p)(x)=n=0(1)nn!(1)pp!(x+n)p+1.
Commented by math khazana by abdo last updated on 29/Apr/18
3) we have proved that  xS(x)−S(x+1)=(1/e) ⇒  x S(x) −S(1)∼ (1/e)  (x→0^+ ) ⇒  xS(x) −1+(1/e) ∼ (1/e) ⇒ S(x)∼ (1/x) (x→0^+ ) .
3)wehaveprovedthatxS(x)S(x+1)=1exS(x)S(1)1e(x0+)xS(x)1+1e1eS(x)1x(x0+).

Leave a Reply

Your email address will not be published. Required fields are marked *