Question Number 33699 by math khazana by abdo last updated on 22/Apr/18
$${let}\:{S}\left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:{f}_{{n}} \left({x}\right)\:\:{with}\:{f}_{{n}} \left({x}\right)=\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!\left({x}+{n}\right)} \\ $$$$\left.{x}\in\right]\mathrm{0},+\infty\left[\right. \\ $$$$\left.\mathrm{1}\right)\:\:{prove}\:{that}\:{S}\:{id}\:{defined}\:.{calculate}\:{S}\left(\mathrm{1}\right)\:{and} \\ $$$${prove}\:{that}\:\forall{x}>\mathrm{0}\:\:{xS}\left({x}\right)\:−{S}\left({x}+\mathrm{1}\right)\:=\frac{\mathrm{1}}{{e}} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:{S}\:{is}\:{C}^{\infty} \:{on}\:{R}^{+\ast} \\ $$$$\left.\mathrm{3}\right)\:{prove}\:{that}\:{S}\left({x}\right)\:\sim\:\frac{\mathrm{1}}{{x}}\:\left({x}\rightarrow\mathrm{0}^{+} \right)\:. \\ $$
Commented by math khazana by abdo last updated on 29/Apr/18
$${we}\:{have}\:\mid{f}_{{n}} \left({x}\right)\mid=\:\frac{\mathrm{1}}{{n}!\left({x}+{n}\right)}\:\leqslant\:\frac{\mathrm{1}}{{n}\left({n}!\right)}\:{but}\:{the}\:{seSrie} \\ $$$$\left.\Sigma\:\:\frac{\mathrm{1}}{{n}\left({n}!\right)}\:{is}\:{convergent}\:{so}\:{S}\:{is}\:{defined}\:{on}\right]\mathrm{0},+\infty\left[\right. \\ $$$${S}\left(\mathrm{1}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:{f}_{{n}} \left(\mathrm{1}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!\left({n}+\mathrm{1}\right)} \\ $$$${let}\:{w}\left({x}\right)\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!\left({n}+\mathrm{1}\right)}\:{x}^{{n}+\mathrm{1}} \\ $$$${w}^{'} \left({x}\right)\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} \:{x}^{{n}} }{{n}!}\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−{x}\right)^{{n}} }{{n}!}\:={e}^{−{x}} \:\Rightarrow \\ $$$${w}\left({x}\right)=−{e}^{−{x}} \:+\lambda\:\:{we}\:{have}\:{w}\left(\mathrm{0}\right)=\mathrm{0}\:=−\mathrm{1}\:+\lambda\:\Rightarrow \\ $$$$\lambda=\mathrm{1}\:\Rightarrow{w}\left({x}\right)=\mathrm{1}−{e}^{−{x}} \\ $$$${S}\left(\mathrm{1}\right)={w}\left(\mathrm{1}\right)=\:\mathrm{1}−\frac{\mathrm{1}}{{e}}\:. \\ $$$${xS}\left({x}\right)\:−{S}\left({x}+\mathrm{1}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{x}\left(−\mathrm{1}\right)^{{n}} }{{n}!\left({x}+{n}\right)}\:−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!\left({x}+{n}+\mathrm{1}\right)} \\ $$$$=\mathrm{1}+\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\:\left(\:\frac{{x}+{n}\:−{n}}{{x}+{n}}\right)\:−\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!\left({x}+{n}+\mathrm{1}\right)} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\:−\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}−\mathrm{1}\right)!\left({x}+{n}\right)}\:−\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!\left({x}+{n}+\mathrm{1}\right)} \\ $$$$=\:\frac{\mathrm{1}}{{e}}\:−\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{{n}!\left({x}+{n}\:+\mathrm{1}\right)}\:−\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!\left({x}+{n}+\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{1}}{{e}}\:\Rightarrow\:{xS}\left({x}\right)\:−{S}\left({x}+\mathrm{1}\right)\:=\frac{\mathrm{1}}{{e}} \\ $$
Commented by math khazana by abdo last updated on 29/Apr/18
$$\left.\mathrm{2}\right)\:{due}\:{to}\:{uniform}\:{convergence}\:{and}\:{f}_{{n}} \:{are}\:{C}^{\infty} \\ $$$$\left.{S}\:{will}\:{be}\:{C}^{} \:{on}\:\right]\mathrm{0},+\infty\left[\:{and}\right. \\ $$$${S}^{\left({p}\right)} \left({x}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:{f}_{{n}} ^{\left({p}\right)} \left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\:\:\frac{\left(−\mathrm{1}\right)^{{p}} {p}!}{\left({x}+{n}\right)^{{p}+\mathrm{1}} }\:. \\ $$$$ \\ $$
Commented by math khazana by abdo last updated on 29/Apr/18
$$\left.\mathrm{3}\right)\:{we}\:{have}\:{proved}\:{that}\:\:{xS}\left({x}\right)−{S}\left({x}+\mathrm{1}\right)=\frac{\mathrm{1}}{{e}}\:\Rightarrow \\ $$$${x}\:{S}\left({x}\right)\:−{S}\left(\mathrm{1}\right)\sim\:\frac{\mathrm{1}}{{e}}\:\:\left({x}\rightarrow\mathrm{0}^{+} \right)\:\Rightarrow \\ $$$${xS}\left({x}\right)\:−\mathrm{1}+\frac{\mathrm{1}}{{e}}\:\sim\:\frac{\mathrm{1}}{{e}}\:\Rightarrow\:{S}\left({x}\right)\sim\:\frac{\mathrm{1}}{{x}}\:\left({x}\rightarrow\mathrm{0}^{+} \right)\:. \\ $$