Menu Close

let-S-x-n-1-1-n-1-x-2n-1-4n-2-1-1-find-the-radius-of-convergence-2-calculate-the-sum-S-x-




Question Number 34309 by prof Abdo imad last updated on 03/May/18
let S(x)= Σ_(n=1) ^∞   (−1)^(n−1)    (x^(2n+1) /(4n^2  −1))  1) find the radius of convergence  2) calculate the sum  S(x).
letS(x)=n=1(1)n1x2n+14n211)findtheradiusofconvergence2)calculatethesumS(x).
Commented by math khazana by abdo last updated on 07/May/18
S(x)=(1/2)Σ_(n=1) ^∞  (−1)^(n−1)  ((1/(2n−1)) −(1/(2n+1)))x^(2n+1)   2S(x)= Σ_(n=1) ^∞   (((−1)^(n−1) )/(2n−1))x^(2n+1)   +Σ_(n=1) ^∞   (((−1)^n  x^(2n+1) )/(2n+1))  =Σ_(n=2) ^∞   (((−1)^n )/(2n+1))x^(2n+3)   +Σ_(n=1) ^∞   (((−1)^n  x^(2n+1) )/(2n+1))  =Σ_(n=0) ^∞    (((−1)^n  x^(2n+3) )/(2n+1))   −x^3   +(x^5 /3) +Σ_(n=0) ^∞  (((−1)^n  x^(2n+1) )/(2n+1))  −x  =(x^2 +1) Σ_(n=0) ^∞    (((−1)^n  x^(2n+1) )/(2n+1))  −x^3   +(x^5 /3)  let put w(x)= Σ_(n=0) ^∞   (((−1)^n  x^(2n+1) )/(2n+1))  w^′ (x) =Σ_(n=0) ^∞  (−1)^n  x^(2n)  =Σ_(n=0) ^∞ (−x^2 )^n  = (1/(1+x^2 ))  ⇒ w(x)= arctanx +λ but  λ =w(0) =0⇒  w(x)= arctanx so   S(x)=(1/2){(x^2 +1)arctanx  +(x^5 /3)  −x^3  } .
S(x)=12n=1(1)n1(12n112n+1)x2n+12S(x)=n=1(1)n12n1x2n+1+n=1(1)nx2n+12n+1=n=2(1)n2n+1x2n+3+n=1(1)nx2n+12n+1=n=0(1)nx2n+32n+1x3+x53+n=0(1)nx2n+12n+1x=(x2+1)n=0(1)nx2n+12n+1x3+x53letputw(x)=n=0(1)nx2n+12n+1w(x)=n=0(1)nx2n=n=0(x2)n=11+x2w(x)=arctanx+λbutλ=w(0)=0w(x)=arctanxsoS(x)=12{(x2+1)arctanx+x53x3}.
Commented by math khazana by abdo last updated on 07/May/18
the radius of convergence is R =1 .
theradiusofconvergenceisR=1.
Commented by math khazana by abdo last updated on 08/May/18
S(x)= (1/2){ (x^2 +1)arctan(x) −x−x^3  +(x^5 /3)}
S(x)=12{(x2+1)arctan(x)xx3+x53}

Leave a Reply

Your email address will not be published. Required fields are marked *