Question Number 34309 by prof Abdo imad last updated on 03/May/18
$${let}\:{S}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:\:\:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{4}{n}^{\mathrm{2}} \:−\mathrm{1}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{radius}\:{of}\:{convergence} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{the}\:{sum}\:\:{S}\left({x}\right). \\ $$
Commented by math khazana by abdo last updated on 07/May/18
$${S}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\sum_{{n}=\mathrm{1}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:\left(\frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}\:−\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\right){x}^{\mathrm{2}{n}+\mathrm{1}} \\ $$$$\mathrm{2}{S}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{\mathrm{2}{n}−\mathrm{1}}{x}^{\mathrm{2}{n}+\mathrm{1}} \:\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} \:{x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}} \\ $$$$=\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}{x}^{\mathrm{2}{n}+\mathrm{3}} \:\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} \:{x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} \:{x}^{\mathrm{2}{n}+\mathrm{3}} }{\mathrm{2}{n}+\mathrm{1}}\:\:\:−{x}^{\mathrm{3}} \:\:+\frac{{x}^{\mathrm{5}} }{\mathrm{3}}\:+\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} \:{x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}} \\ $$$$−{x} \\ $$$$=\left({x}^{\mathrm{2}} +\mathrm{1}\right)\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} \:{x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}}\:\:−{x}^{\mathrm{3}} \:\:+\frac{{x}^{\mathrm{5}} }{\mathrm{3}} \\ $$$${let}\:{put}\:{w}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} \:{x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}} \\ $$$${w}^{'} \left({x}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:{x}^{\mathrm{2}{n}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−{x}^{\mathrm{2}} \right)^{{n}} \:=\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\Rightarrow\:{w}\left({x}\right)=\:{arctanx}\:+\lambda\:{but}\:\:\lambda\:={w}\left(\mathrm{0}\right)\:=\mathrm{0}\Rightarrow \\ $$$${w}\left({x}\right)=\:{arctanx}\:{so}\: \\ $$$${S}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left\{\left({x}^{\mathrm{2}} +\mathrm{1}\right){arctanx}\:\:+\frac{{x}^{\mathrm{5}} }{\mathrm{3}}\:\:−{x}^{\mathrm{3}} \:\right\}\:. \\ $$
Commented by math khazana by abdo last updated on 07/May/18
$${the}\:{radius}\:{of}\:{convergence}\:{is}\:{R}\:=\mathrm{1}\:. \\ $$
Commented by math khazana by abdo last updated on 08/May/18
$${S}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}}\left\{\:\left({x}^{\mathrm{2}} +\mathrm{1}\right){arctan}\left({x}\right)\:−{x}−{x}^{\mathrm{3}} \:+\frac{{x}^{\mathrm{5}} }{\mathrm{3}}\right\} \\ $$