Question Number 115534 by Hassen_Timol last updated on 26/Sep/20
$$\mathrm{Let}\:\mathrm{say}\:{r}^{\left({n}\right)} \:=\:\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({r}−{k}\right)\:\mathrm{and}\:{r}^{\left(\mathrm{0}\right)} =\mathrm{1} \\ $$$$\mathrm{With}\:{n}\in\mathbb{N}\:\mathrm{and}\:{r}\in\mathbb{R}… \\ $$$$\mathrm{1}.\:\:\:\mathrm{Show}\:\mathrm{that}\:\left({n}−\mathrm{1}−{r}\right)^{\left({n}\right)} \:=\:\left(−\mathrm{1}\right)^{\left({n}\right)} \left({r}\right)^{\left({n}\right)} \\ $$$$\mathrm{2}.\:\mathrm{If}\:{m}\leqslant{n},\:\mathrm{show}\:\mathrm{that}\:\:\frac{{r}^{\left({n}\right)} }{{r}^{\left({m}\right)} }=\left({r}−{m}\right)^{\left({n}−{m}\right)} \\ $$$$\mathrm{3}.\:\mathrm{Espress}\:{r}^{\left({n}+{m}\right)} \:\mathrm{as}\:{w}^{\left({n}\right)} {w}'^{\left({m}\right)} \\ $$$$\mathrm{4}.\:\mathrm{Show}\:\mathrm{that}\:\left(\mathrm{2}{r}\right)^{\left(\mathrm{2}{n}\right)} =\mathrm{2}^{\mathrm{2}{n}} {r}^{\left({n}\right)} \left({r}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\left({n}\right)} \\ $$$$ \\ $$$$\mathrm{Can}\:\mathrm{you}\:\mathrm{help}\:\mathrm{me}…\:\mathrm{please}… \\ $$
Commented by Hassen_Timol last updated on 26/Sep/20
$$\mathrm{Could}\:\mathrm{you}\:\mathrm{help}\:\mathrm{me}…\:\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{understand}? \\ $$
Answered by aleks041103 last updated on 26/Sep/20
$$\mathrm{1}. \\ $$$$\left({n}−\mathrm{1}−{r}\right)^{\left({n}\right)} =\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({n}−\mathrm{1}−{r}−{k}\right)= \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\left({n}−\mathrm{1}−{k}\right)−{r}\right) \\ $$$${let}\:{i}={n}−\mathrm{1}−{k},\:{so}\:{if}\:{k}\in\left[\mathrm{0},{n}−\mathrm{1}\right]\:{then} \\ $$$${i}\in\left[{n}−\mathrm{1},\mathrm{0}\right]\equiv\left[\mathrm{0},{n}−\mathrm{1}\right] \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\left({n}−\mathrm{1}−{k}\right)−{r}\right)=\underset{{i}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({i}−{r}\right)= \\ $$$$=\underset{{i}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({r}−{i}\right)\left(−\mathrm{1}\right)=\underset{{i}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({r}−{i}\right)\underset{{i}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left(−\mathrm{1}\right)= \\ $$$$={r}^{\left({n}\right)} \left(−\mathrm{1}\right)^{{n}} \\ $$$$\Rightarrow\left({n}−\mathrm{1}−{r}\right)^{\left({n}\right)} =\left(−\mathrm{1}\right)^{{n}} {r}^{\left({n}\right)} \\ $$
Commented by Hassen_Timol last updated on 26/Sep/20
Thank you so much, it's very nice ! thanks a lot... if you know how to do for the other questions, it would be even more nice ! But once again, thanks a lot
Commented by aleks041103 last updated on 27/Sep/20
$${I}'{ll}\:{answer}\:\mathrm{3}\:{and}\:\mathrm{4}\:{later} \\ $$
Answered by aleks041103 last updated on 26/Sep/20
$$\mathrm{2}. \\ $$$$\:\frac{{r}^{\left({n}\right)} }{{r}^{\left({m}\right)} }=\frac{\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({r}−{k}\right)}{\underset{{k}=\mathrm{0}} {\overset{{m}−\mathrm{1}} {\prod}}\left({r}−{k}\right)}=\frac{\underset{{k}=\mathrm{0}} {\overset{{m}−\mathrm{1}} {\prod}}\left({r}−{k}\right)\underset{{k}={m}} {\overset{{n}−\mathrm{1}} {\prod}}\left({r}−{k}\right)}{\underset{{k}=\mathrm{0}} {\overset{{m}−\mathrm{1}} {\prod}}\left({r}−{k}\right)} \\ $$$$=\underset{{k}={m}} {\overset{{n}−\mathrm{1}} {\prod}}\left({r}−{k}\right) \\ $$$${let}\:{k}={m}+{i},\:{so}\:{if}\:{k}\in\left[{m},{n}−\mathrm{1}\right]\:{then} \\ $$$${i}\in\left[\mathrm{0},\left({n}−{m}\right)−\mathrm{1}\right] \\ $$$$\frac{{r}^{\left({n}\right)} }{{r}^{\left({m}\right)} }=\underset{{i}=\mathrm{0}} {\overset{\left({n}−{m}\right)−\mathrm{1}} {\prod}}\left({r}−\left({m}+{i}\right)\right)= \\ $$$$=\underset{{i}=\mathrm{0}} {\overset{\left({n}−{m}\right)−\mathrm{1}} {\prod}}\left(\left({r}−{m}\right)−{i}\right)=\left({r}−{m}\right)^{\left({n}−{m}\right)} \\ $$$$\Rightarrow\frac{{r}^{\left({n}\right)} }{{r}^{\left({m}\right)} }=\left({r}−{m}\right)^{\left({n}−{m}\right)} \\ $$
Commented by Hassen_Timol last updated on 26/Sep/20
Thank you very much !
Answered by aleks041103 last updated on 27/Sep/20
$$\mathrm{3}. \\ $$$${r}^{\left({n}+{m}\right)} =\underset{{k}=\mathrm{0}} {\overset{{n}+{m}−\mathrm{1}} {\prod}}\left({r}−{k}\right)= \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({r}−{k}\right)\underset{{k}={n}} {\overset{{n}+{m}−\mathrm{1}} {\prod}}\left({r}−{k}\right)= \\ $$$$={r}^{\left({n}\right)} \underset{{k}={n}} {\overset{{n}+{m}−\mathrm{1}} {\prod}}\left({r}−{k}\right) \\ $$$${let}\:{k}={n}+{i}\:{so} \\ $$$$\underset{{k}={n}} {\overset{{n}+{m}−\mathrm{1}} {\prod}}\left({r}−{k}\right)=\underset{{i}=\mathrm{0}} {\overset{{m}−\mathrm{1}} {\prod}}\left({r}−{n}−{i}\right)=\left({r}−{n}\right)^{\left({m}\right)} \\ $$$$\Rightarrow{r}^{\left({n}+{m}\right)} ={r}^{\left({n}\right)} \left({r}−{n}\right)^{\left({m}\right)} \\ $$$${By}\:{analogy} \\ $$$${r}^{\left({n}+{m}\right)} ={r}^{\left({m}\right)} \left({r}−{m}\right)^{\left({n}\right)} \\ $$$${So} \\ $$$${r}^{\left({n}+{m}\right)} =\left({r}−{m}\right)^{\left({n}\right)} {r}^{\left({m}\right)} ={r}^{\left({n}\right)} \left({r}−{n}\right)^{\left({m}\right)} \\ $$
Answered by aleks041103 last updated on 27/Sep/20
$$\mathrm{4}. \\ $$$$\left(\mathrm{2}{r}\right)^{\left(\mathrm{2}{n}\right)} =\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}−\mathrm{1}} {\prod}}\left(\mathrm{2}{r}−{k}\right)=\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}−\mathrm{1}} {\prod}}\left({r}−\frac{{k}}{\mathrm{2}}\right)\mathrm{2}= \\ $$$$=\mathrm{2}^{\mathrm{2}{n}} \underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}−\mathrm{1}} {\prod}}\left({r}−\frac{{k}}{\mathrm{2}}\right) \\ $$$$\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}−\mathrm{1}} {\prod}}\left({r}−\frac{{k}}{\mathrm{2}}\right)= \\ $$$$=\underset{{k}=\mathrm{0};{even}\:{k}} {\overset{\mathrm{2}{n}−\mathrm{1}} {\prod}}\left({r}−\frac{{k}}{\mathrm{2}}\right)\underset{{k}=\mathrm{0};{odd}\:{k}} {\overset{\mathrm{2}{n}−\mathrm{1}} {\prod}}\left({r}−\frac{{k}}{\mathrm{2}}\right)= \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({r}−\frac{\mathrm{2}{k}}{\mathrm{2}}\right)\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({r}−\frac{\mathrm{2}{k}+\mathrm{1}}{\mathrm{2}}\right)= \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({r}−{k}\right)\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({r}−\frac{\mathrm{1}}{\mathrm{2}}−{k}\right) \\ $$$$={r}^{\left({n}\right)} \left({r}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\left({n}\right)} \\ $$$$\Rightarrow\left(\mathrm{2}{r}\right)^{\left(\mathrm{2}{n}\right)} =\mathrm{2}^{\mathrm{2}{n}} {r}^{\left({n}\right)} \left({r}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\left({n}\right)} \\ $$$$ \\ $$