Menu Close

Let-T-k-is-the-k-th-term-and-S-k-is-the-sum-of-the-first-k-term-in-arithmetic-progression-If-T-3-T-6-T-9-T-12-T-15-T-18-45-Find-S-20-




Question Number 24677 by Joel578 last updated on 24/Nov/17
Let T_k  is the k^(th)  term and S_k  is the sum  of the first k term in arithmetic progression  If T_3  + T_6  + T_9  + T_(12)  + T_(15)  + T_(18)  = 45  Find S_(20)
LetTkisthekthtermandSkisthesumofthefirstkterminarithmeticprogressionIfT3+T6+T9+T12+T15+T18=45FindS20
Answered by jota+ last updated on 24/Nov/17
6T_1 +(2+5+8+11+14+17)r=45  2T_1 +19r=15  T_1 +(T_1 +19r)=15  T_1 +T_(20) =15  S_(20) =15×10
6T1+(2+5+8+11+14+17)r=452T1+19r=15T1+(T1+19r)=15T1+T20=15S20=15×10
Commented by Joel578 last updated on 22/Dec/17
thank you very much
thankyouverymuch
Answered by ajfour last updated on 22/Dec/17
3(T_3 +T_6 +T_9 +...+T_(18) )=135  ⇒  (T_2 +T_3 +T_4 )+(T_5 +T_6 +T_7 )+..       ....+(T_(17) +T_(18) +T_(19) )=135    ..(i)  and   (((T_1 +T_(20) )/2))×20=S_(20)   ⇒   T_1 +T_(20) =(S_(20) /(10))       ....(ii)  adding (i) and (ii)  S_(20) =135+(S_(20) /(10))  ⇒   S_(20) =135×((10)/9) = 150 .
3(T3+T6+T9++T18)=135(T2+T3+T4)+(T5+T6+T7)+...+(T17+T18+T19)=135..(i)and(T1+T202)×20=S20T1+T20=S2010.(ii)adding(i)and(ii)S20=135+S2010S20=135×109=150.

Leave a Reply

Your email address will not be published. Required fields are marked *