Menu Close

let-the-closed-interval-a-b-be-the-domain-of-the-function-f-find-the-domain-of-f-x-3-and-f-x-3-




Question Number 192732 by mokys last updated on 25/May/23
let the closed interval [a,b] be the domain of the function f   find the domain of f(x−3) and f(x+3) ?
$${let}\:{the}\:{closed}\:{interval}\:\left[{a},{b}\right]\:{be}\:{the}\:{domain}\:{of}\:{the}\:{function}\:{f}\: \\ $$$${find}\:{the}\:{domain}\:{of}\:{f}\left({x}−\mathrm{3}\right)\:{and}\:{f}\left({x}+\mathrm{3}\right)\:?\:\: \\ $$
Answered by MM42 last updated on 25/May/23
a≤x−3≤b⇒a+3≤x≤b+3⇒D_(f−3) =[a+3,b+3]  a≤x+3≤b⇒a−3≤x≤b−3⇒D_(f+3) =[a−3,b−3]
$${a}\leqslant{x}−\mathrm{3}\leqslant{b}\Rightarrow{a}+\mathrm{3}\leqslant{x}\leqslant{b}+\mathrm{3}\Rightarrow{D}_{{f}−\mathrm{3}} =\left[{a}+\mathrm{3},{b}+\mathrm{3}\right] \\ $$$${a}\leqslant{x}+\mathrm{3}\leqslant{b}\Rightarrow{a}−\mathrm{3}\leqslant{x}\leqslant{b}−\mathrm{3}\Rightarrow{D}_{{f}+\mathrm{3}} =\left[{a}−\mathrm{3},{b}−\mathrm{3}\right] \\ $$
Answered by Rajpurohith last updated on 26/May/23
so for a≤x≤b ,f(x) is defined  ⇒for a−3≤x−3≤b−3 ,f(x−3) is defined.  ⇒for a+3≤x+3≤b+3 ,f(x+3) is defined.
$${so}\:{for}\:{a}\leqslant{x}\leqslant{b}\:,{f}\left({x}\right)\:{is}\:{defined} \\ $$$$\Rightarrow{for}\:{a}−\mathrm{3}\leqslant{x}−\mathrm{3}\leqslant{b}−\mathrm{3}\:,{f}\left({x}−\mathrm{3}\right)\:{is}\:{defined}. \\ $$$$\Rightarrow{for}\:{a}+\mathrm{3}\leqslant{x}+\mathrm{3}\leqslant{b}+\mathrm{3}\:,{f}\left({x}+\mathrm{3}\right)\:{is}\:{defined}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *