Menu Close

let-the-differential-equation-1-x-y-x-1-x-y-x-1-x-1-x-y-x-y-0-1-y-0-0-then-prove-that-0-y-x-y-x-y-x-e-x-dx-3-2-




Question Number 161039 by HongKing last updated on 11/Dec/21
let the differential equation:  (1 + x) y^(′′) (x) + (1 - x) y^′ (x) = ((1-x)/(1+x)) y(x)  y(0) = 1 , y^′ (0) = 0  then prove that:  ∫_( 0) ^( ∞) (y^(′′) (x) + y^′ (x) + y(x)) e^(-x)  dx = (3/2)
$$\mathrm{let}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation}: \\ $$$$\left(\mathrm{1}\:+\:\mathrm{x}\right)\:\mathrm{y}^{''} \left(\mathrm{x}\right)\:+\:\left(\mathrm{1}\:-\:\mathrm{x}\right)\:\mathrm{y}^{'} \left(\mathrm{x}\right)\:=\:\frac{\mathrm{1}-\mathrm{x}}{\mathrm{1}+\mathrm{x}}\:\mathrm{y}\left(\mathrm{x}\right) \\ $$$$\mathrm{y}\left(\mathrm{0}\right)\:=\:\mathrm{1}\:,\:\mathrm{y}^{'} \left(\mathrm{0}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\left(\mathrm{y}^{''} \left(\mathrm{x}\right)\:+\:\mathrm{y}^{'} \left(\mathrm{x}\right)\:+\:\mathrm{y}\left(\mathrm{x}\right)\right)\:\mathrm{e}^{-\boldsymbol{\mathrm{x}}} \:\mathrm{dx}\:=\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *