Menu Close

Let-the-independent-random-variables-X-1-and-X-2-have-binomial-distribution-with-parameters-n-1-3-p-2-3-and-n-2-4-p-1-2-respectively-Compute-P-X-1-X-2-




Question Number 149463 by jlewis last updated on 05/Aug/21
Let the independent random variables  X_1  and X_2  have binomial distribution  with parameters n_1 =3,p=2/3 and n_2 =4  p=1/2  respectively.   Compute P(X_1 =X_2 )
LettheindependentrandomvariablesX1andX2havebinomialdistributionwithparametersn1=3,p=2/3andn2=4p=1/2respectively.ComputeP(X1=X2)
Answered by Olaf_Thorendsen last updated on 05/Aug/21
• P(X_1 =k) = C_k ^n_1  p_1 ^k (1−p_1 )^(n_1 −k)   P(X_1 =k) = C_k ^3 ((2/3))^k ((1/3))^(3−k) = (1/(27))C_k ^3 2^k   • P(X_2 =k) = C_k ^n_2  p_2 ^k (1−p_2 )^(n_2 −k)   P(X_2 =k) = C_k ^4 ((1/2))^k ((1/2))^(4−k) = (1/(16))C_k ^4   • P(X_1 =X_2 ) = P(X_1 =0)P(X_2 =0)   +P(X_1 =1)P(X_2 =1)  +P(X_1 =2)P(X_2 =2)  +P(X_1 =3)P(X_2 =3)  = ((C_0 ^3 2^0 C_0 ^4 +C_1 ^3 2^1 C_1 ^4 +C_2 ^3 2^2 C_2 ^4 +C_3 ^3 2^3 C_3 ^4 )/(27.16))  = ((1+24+72+32)/(432)) = ((43)/(144)) ≈ 29,9%.
P(X1=k)=Ckn1p1k(1p1)n1kP(X1=k)=Ck3(23)k(13)3k=127Ck32kP(X2=k)=Ckn2p2k(1p2)n2kP(X2=k)=Ck4(12)k(12)4k=116Ck4P(X1=X2)=P(X1=0)P(X2=0)+P(X1=1)P(X2=1)+P(X1=2)P(X2=2)+P(X1=3)P(X2=3)=C0320C04+C1321C14+C2322C24+C3323C3427.16=1+24+72+32432=4314429,9%.

Leave a Reply

Your email address will not be published. Required fields are marked *