Question Number 149463 by jlewis last updated on 05/Aug/21
$$\mathrm{Let}\:\mathrm{the}\:\mathrm{independent}\:\mathrm{random}\:\mathrm{variables} \\ $$$$\mathrm{X}_{\mathrm{1}} \:\mathrm{and}\:\mathrm{X}_{\mathrm{2}} \:\mathrm{have}\:\mathrm{binomial}\:\mathrm{distribution} \\ $$$$\mathrm{with}\:\mathrm{parameters}\:\mathrm{n}_{\mathrm{1}} =\mathrm{3},\mathrm{p}=\mathrm{2}/\mathrm{3}\:\mathrm{and}\:\mathrm{n}_{\mathrm{2}} =\mathrm{4} \\ $$$$\mathrm{p}=\mathrm{1}/\mathrm{2}\:\:\mathrm{respectively}.\: \\ $$$$\mathrm{Compute}\:\mathrm{P}\left(\mathrm{X}_{\mathrm{1}} =\mathrm{X}_{\mathrm{2}} \right) \\ $$
Answered by Olaf_Thorendsen last updated on 05/Aug/21
$$\bullet\:\mathrm{P}\left(\mathrm{X}_{\mathrm{1}} ={k}\right)\:=\:\mathrm{C}_{{k}} ^{{n}_{\mathrm{1}} } {p}_{\mathrm{1}} ^{{k}} \left(\mathrm{1}−{p}_{\mathrm{1}} \right)^{{n}_{\mathrm{1}} −{k}} \\ $$$$\mathrm{P}\left(\mathrm{X}_{\mathrm{1}} ={k}\right)\:=\:\mathrm{C}_{{k}} ^{\mathrm{3}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{k}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{3}−{k}} =\:\frac{\mathrm{1}}{\mathrm{27}}\mathrm{C}_{{k}} ^{\mathrm{3}} \mathrm{2}^{{k}} \\ $$$$\bullet\:\mathrm{P}\left(\mathrm{X}_{\mathrm{2}} ={k}\right)\:=\:\mathrm{C}_{{k}} ^{{n}_{\mathrm{2}} } {p}_{\mathrm{2}} ^{{k}} \left(\mathrm{1}−{p}_{\mathrm{2}} \right)^{{n}_{\mathrm{2}} −{k}} \\ $$$$\mathrm{P}\left(\mathrm{X}_{\mathrm{2}} ={k}\right)\:=\:\mathrm{C}_{{k}} ^{\mathrm{4}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{k}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{4}−{k}} =\:\frac{\mathrm{1}}{\mathrm{16}}\mathrm{C}_{{k}} ^{\mathrm{4}} \\ $$$$\bullet\:\mathrm{P}\left(\mathrm{X}_{\mathrm{1}} =\mathrm{X}_{\mathrm{2}} \right)\:=\:\mathrm{P}\left(\mathrm{X}_{\mathrm{1}} =\mathrm{0}\right)\mathrm{P}\left(\mathrm{X}_{\mathrm{2}} =\mathrm{0}\right) \\ $$$$\:+\mathrm{P}\left(\mathrm{X}_{\mathrm{1}} =\mathrm{1}\right)\mathrm{P}\left(\mathrm{X}_{\mathrm{2}} =\mathrm{1}\right) \\ $$$$+\mathrm{P}\left(\mathrm{X}_{\mathrm{1}} =\mathrm{2}\right)\mathrm{P}\left(\mathrm{X}_{\mathrm{2}} =\mathrm{2}\right) \\ $$$$+\mathrm{P}\left(\mathrm{X}_{\mathrm{1}} =\mathrm{3}\right)\mathrm{P}\left(\mathrm{X}_{\mathrm{2}} =\mathrm{3}\right) \\ $$$$=\:\frac{\mathrm{C}_{\mathrm{0}} ^{\mathrm{3}} \mathrm{2}^{\mathrm{0}} \mathrm{C}_{\mathrm{0}} ^{\mathrm{4}} +\mathrm{C}_{\mathrm{1}} ^{\mathrm{3}} \mathrm{2}^{\mathrm{1}} \mathrm{C}_{\mathrm{1}} ^{\mathrm{4}} +\mathrm{C}_{\mathrm{2}} ^{\mathrm{3}} \mathrm{2}^{\mathrm{2}} \mathrm{C}_{\mathrm{2}} ^{\mathrm{4}} +\mathrm{C}_{\mathrm{3}} ^{\mathrm{3}} \mathrm{2}^{\mathrm{3}} \mathrm{C}_{\mathrm{3}} ^{\mathrm{4}} }{\mathrm{27}.\mathrm{16}} \\ $$$$=\:\frac{\mathrm{1}+\mathrm{24}+\mathrm{72}+\mathrm{32}}{\mathrm{432}}\:=\:\frac{\mathrm{43}}{\mathrm{144}}\:\approx\:\mathrm{29},\mathrm{9\%}. \\ $$