Question Number 81430 by abdomathmax last updated on 13/Feb/20
$${let}\:{the}\:{matrix}\:{A}=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\mathrm{2}}\\{−\mathrm{1}\:\:\:\mathrm{3}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\:{calculste}\:{A}^{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{e}^{{A}} \:{and}\:{e}^{−{A}} \\ $$$$\left.\mathrm{3}\right){find}\:{cosA}\:{and}\:{sinA} \\ $$
Commented by abdomathmax last updated on 13/Feb/20
$$\left.\mathrm{1}\right)\:{P}_{{c}} \left({A}\right)\:={det}\:\left({A}−{xI}\right)=\begin{vmatrix}{\mathrm{1}−{x}\:\:\:\:\:\:\:\mathrm{2}}\\{−\mathrm{1}\:\:\:\:\:\:\:\mathrm{3}−{x}}\end{vmatrix} \\ $$$$=\left(\mathrm{1}−{x}\right)\left(\mathrm{3}−{x}\right)+\mathrm{2}\:=\mathrm{3}−{x}−\mathrm{3}{x}+{x}^{\mathrm{2}} \:+\mathrm{2} \\ $$$$={x}^{\mathrm{2}} −\mathrm{4}{x}\:+\mathrm{5}\:\rightarrow\Delta^{'} =\mathrm{4}−\mathrm{5}\:=−\mathrm{1}\:\Rightarrow \\ $$$$\lambda_{\mathrm{1}} =\mathrm{2}+{i}\:\:{and}\:\lambda_{\mathrm{2}} =\mathrm{2}−{i} \\ $$$${x}^{{n}} ={Q}\:\left({x}\right){P}_{{c}} \left({x}\right)\:+{u}_{{n}} {x}\:+{v}_{{n}} \:\Rightarrow \\ $$$${A}^{{n}} \:={u}_{{n}} \:{A}\:+{v}_{{n}\:{I}} \\ $$$$\lambda_{\mathrm{1}} ^{{n}} =\:{u}_{{n}} \lambda_{\mathrm{1}} \:+{v}_{{n}} \:{and}\:\lambda_{\mathrm{2}} ^{{n}} \:={u}_{{n}} \lambda_{\mathrm{2}} \:+{v}_{{n}} \:\Rightarrow \\ $$$$\lambda_{\mathrm{1}} ^{{n}} \:−\lambda_{\mathrm{2}} ^{{n}} \:=\left(\lambda_{\mathrm{1}} −\lambda_{\mathrm{2}} \right){u}_{{n}} \:\Rightarrow{u}_{{n}} =\frac{\lambda_{\mathrm{1}} ^{{n}} \:−\lambda_{\mathrm{2}} ^{{n}} }{\mathrm{2}{i}} \\ $$$$=\frac{\mathrm{2}{i}\:{Im}\left(\lambda_{\mathrm{1}} ^{{n}} \right)}{\mathrm{2}{i}}\:={Im}\left(\lambda_{\mathrm{1}} ^{{n}} \right)\:\:{we}\:{have}\:\lambda_{\mathrm{1}} =\sqrt{\mathrm{5}}{e}^{{iarctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \:\Rightarrow \\ $$$$\lambda_{\mathrm{1}} ^{{n}} \:=\left(\sqrt{\mathrm{5}}\right)^{{n}} \:{e}^{{inarctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \:\Rightarrow{u}_{{n}} =\left(\sqrt{\mathrm{5}}\right)^{{n}} {sin}\left({narctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$$${v}_{{n}} =\lambda_{\mathrm{1}} ^{{n}} −\lambda_{\mathrm{1}} {u}_{{n}} =\lambda_{\mathrm{1}} ^{{n}} −\lambda_{\mathrm{1}} ×\frac{\lambda_{\mathrm{1}} ^{{n}} \:−\lambda_{\mathrm{2}} ^{{n}} }{\lambda_{\mathrm{1}} \:−\lambda_{\mathrm{2}} } \\ $$$$=\frac{\lambda_{\mathrm{1}} ^{{n}+\mathrm{1}} −\lambda_{\mathrm{2}} \:\lambda_{\mathrm{1}} ^{{n}} \:−\lambda_{\mathrm{1}} ^{{n}+\mathrm{1}} +\lambda_{\mathrm{1}} \:\lambda_{\mathrm{2}} ^{{n}} }{\lambda_{\mathrm{1}} \:−\lambda_{\mathrm{2}} }\:=\frac{\lambda_{\mathrm{1}} \lambda_{\mathrm{2}} ^{{n}} −\lambda_{\mathrm{2}} \lambda_{\mathrm{1}} ^{{n}} }{\mathrm{2}{i}} \\ $$$${A}^{{n}} \:=\left(\sqrt{\mathrm{5}}\right)^{{n}} \:{sin}\left({narctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right){A}+{v}_{{n}} \:{I} \\ $$$${v}_{{n}} \:=\frac{\left(\mathrm{2}+{i}\right)\left(\mathrm{2}−{i}\right)^{{n}} −\left(\mathrm{2}−{i}\right)\left(\mathrm{2}+{i}\right)^{{n}} }{\mathrm{2}{i}} \\ $$$$={Im}\left(\mathrm{2}+{i}\right)\left(\mathrm{2}−{i}\right)^{{n}} \:{we}\:{have} \\ $$$$\mathrm{2}+{i}=\sqrt{\mathrm{5}}{e}^{{iarctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} {and}\:\:\:\left(\mathrm{2}−{i}\right)^{{n}} \:=\left(\sqrt{\mathrm{5}}{e}^{−{iarctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \right)^{{n}} \\ $$$$=\left(\sqrt{\mathrm{5}}\right)^{{n}} \:{e}^{−{in}\:{arctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \:\Rightarrow \\ $$$$\left(\mathrm{2}+{i}\right)\left(\mathrm{2}−{i}\right)^{{n}} \:=\left(\sqrt{\mathrm{5}}\right)^{{n}+\mathrm{1}} \:{e}^{−{i}\left({n}−\mathrm{1}\right){arctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \\ $$$$\Rightarrow{v}_{{n}} =−\left(\sqrt{\mathrm{5}}\right)^{{n}+\mathrm{1}} \:{sin}\left({n}−\mathrm{1}\right){arctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$