Menu Close

Let-the-region-bounded-by-the-curve-y-x-1-x-and-the-x-axis-be-R-The-line-y-mx-divides-R-into-two-parts-find-the-value-of-1-m-3-




Question Number 161461 by ZiYangLee last updated on 18/Dec/21
Let the region bounded by the curve   y=x(1−x) and the x-axis be R.  The line y=mx divides R into two parts,  find the value of (1−m)^3 .
Lettheregionboundedbythecurvey=x(1x)andthexaxisbeR.Theliney=mxdividesRintotwoparts,findthevalueof(1m)3.
Commented by cortano last updated on 18/Dec/21
Total area = (2/3)×1(1/4)= (1/6)  Area I=((Δ(√Δ))/(6a^2 ))   where x^2 +(m−1)x=0   Δ = (m−1)^2 ; (√Δ) =∣(m−1)∣   since m<1    ⇒area I = (1/2) total area  ⇒(((1−m)^3 )/6) = (1/(12))  ⇒(1−m)^3  =(1/2)
Totalarea=23×114=16AreaI=ΔΔ6a2wherex2+(m1)x=0Δ=(m1)2;Δ=∣(m1)sincem<1areaI=12totalarea(1m)36=112(1m)3=12
Commented by som(math1967) last updated on 18/Dec/21
Is the line y=mx  divides R into  two equal parts  sir ?
Istheliney=mxdividesRintotwoequalpartssir?
Commented by som(math1967) last updated on 18/Dec/21
x−x^2 =0  x(1−x)=0 ∴x=0,1  area of R     ∫_0 ^1 (x−x^2 )dx=(1/2)−(1/3)=(1/6) sq unit  again mx=x−x^2   x=0,(1−m)  ∴ ∫_0 ^(1−m) (x−x^2 )dx −∫_0 ^(1−m) mxdx=(1/(12))    (((1−m)^2 )/2) −(((1−m)^3 )/3) −((m(1−m)^2 )/2)=(1/(12))    (1−m)^2 ((1/2) −((1−m)/3) −(m/2))=(1/(12))  (1−m)^2 (((3−2+2m−3m)/6))=(1/(12))  (((1−m)^3 )/6)=(1/(12))  ∴(1−m)^3 =(1/2)
xx2=0x(1x)=0x=0,1areaofR10(xx2)dx=1213=16squnitagainmx=xx2x=0,(1m)1m0(xx2)dx1m0mxdx=112(1m)22(1m)33m(1m)22=112(1m)2(121m3m2)=112(1m)2(32+2m3m6)=112(1m)36=112(1m)3=12

Leave a Reply

Your email address will not be published. Required fields are marked *