Menu Close

let-u-0-3-and-u-n-1-2-u-n-2-calculate-u-n-interms-of-n-




Question Number 32293 by abdo imad last updated on 22/Mar/18
let u_0 = (√3)  and u_(n+1) =(√(2+u_n ^2 ))  calculate u_n  interms of n.
$${let}\:{u}_{\mathrm{0}} =\:\sqrt{\mathrm{3}}\:\:{and}\:{u}_{{n}+\mathrm{1}} =\sqrt{\mathrm{2}+{u}_{{n}} ^{\mathrm{2}} } \\ $$$${calculate}\:{u}_{{n}} \:{interms}\:{of}\:{n}. \\ $$
Commented by abdo imad last updated on 24/Mar/18
let put v_n = u_n ^2    we have  v_(n+1) =u_(n+1) ^2  = 2+u_n ^2  2+v_n  so  (v_n ) is arithmetic sequence ⇒v_n =v_0  +nr =v_0  +2n but  v_0 =u_0 ^2  =3 ⇒ v_n = 2n+3   due to u_n  >0 we have  u_n =(√v_n )  =(√(2n+3)) .
$${let}\:{put}\:{v}_{{n}} =\:{u}_{{n}} ^{\mathrm{2}} \:\:\:{we}\:{have}\:\:{v}_{{n}+\mathrm{1}} ={u}_{{n}+\mathrm{1}} ^{\mathrm{2}} \:=\:\mathrm{2}+{u}_{{n}} ^{\mathrm{2}} \:\mathrm{2}+{v}_{{n}} \:{so} \\ $$$$\left({v}_{{n}} \right)\:{is}\:{arithmetic}\:{sequence}\:\Rightarrow{v}_{{n}} ={v}_{\mathrm{0}} \:+{nr}\:={v}_{\mathrm{0}} \:+\mathrm{2}{n}\:{but} \\ $$$${v}_{\mathrm{0}} ={u}_{\mathrm{0}} ^{\mathrm{2}} \:=\mathrm{3}\:\Rightarrow\:{v}_{{n}} =\:\mathrm{2}{n}+\mathrm{3}\:\:\:{due}\:{to}\:{u}_{{n}} \:>\mathrm{0}\:{we}\:{have} \\ $$$${u}_{{n}} =\sqrt{{v}_{{n}} }\:\:=\sqrt{\mathrm{2}{n}+\mathrm{3}}\:. \\ $$
Answered by mrW2 last updated on 24/Mar/18
u_n ^2 −u_(n−1) ^2 =2  ......  u_2 ^2 −u_1 ^2 =2  u_1 ^2 −u_0 ^2 =2  ⇒u_n ^2 −u_0 ^2 =2n  ⇒u_n ^2 =u_0 ^2 +2n=2n+3  ⇒u_n =(√(2n+3))
$${u}_{{n}} ^{\mathrm{2}} −{u}_{{n}−\mathrm{1}} ^{\mathrm{2}} =\mathrm{2} \\ $$$$…… \\ $$$${u}_{\mathrm{2}} ^{\mathrm{2}} −{u}_{\mathrm{1}} ^{\mathrm{2}} =\mathrm{2} \\ $$$${u}_{\mathrm{1}} ^{\mathrm{2}} −{u}_{\mathrm{0}} ^{\mathrm{2}} =\mathrm{2} \\ $$$$\Rightarrow{u}_{{n}} ^{\mathrm{2}} −{u}_{\mathrm{0}} ^{\mathrm{2}} =\mathrm{2}{n} \\ $$$$\Rightarrow{u}_{{n}} ^{\mathrm{2}} ={u}_{\mathrm{0}} ^{\mathrm{2}} +\mathrm{2}{n}=\mathrm{2}{n}+\mathrm{3} \\ $$$$\Rightarrow{u}_{{n}} =\sqrt{\mathrm{2}{n}+\mathrm{3}} \\ $$
Commented by abdo imad last updated on 24/Mar/18
your answer is correct sir thanks...
$${your}\:{answer}\:{is}\:{correct}\:{sir}\:{thanks}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *