Menu Close

let-u-0-a-u-1-b-and-u-n-2-1-2-u-n-u-n-1-1-find-u-n-interms-of-n-2-find-lim-n-u-n-if-a-0-




Question Number 32995 by abdo imad last updated on 09/Apr/18
let u_0 =a , u_1 =b and u_(n+2) =(1/2)(u_n  +u_(n+1) )  1) find u_n  interms of n  2) find lim_(n→∞)  u_n   if a=0
letu0=a,u1=bandun+2=12(un+un+1)1)findunintermsofn2)findlimnunifa=0
Commented by abdo imad last updated on 10/Apr/18
u_(n+2)  =(1/2)(u_n  +u_(n+1) ) ⇒2u_(n+2)  =u_(n  ) +u_(n+1 )  ⇒  2u_(n+2)  −u_(n+1)  −u_n =0  the caracteristic equation is  2x^2  −x−1=0 we have Δ=1−4(2)(−1)=9 ⇒  x_1 =((1+3)/4) =1 and x_2 = ((1−3)/4) =−(1/2) ⇒u_n =α +β(−(1/2))^n   u_0 =a ⇒α +β =a , u_1 =b ⇒ α −(β/2) =b ⇒  3(β/2) =a−b ⇒β=(2/3)(a−b) , α =a−β =a −(2/3)(a−b)  = ((a+2b)/3)   ⇒ u_n =((a +2b)/3) +((2a−2b)/3)(−(1/2))^n   2)a=0 ⇒ u_n =((2b)/3) −((2b)/3)(−(1/2))^n    but lim_(n→∞) (−(1/2))^n =0⇒  lim_(n→∞)   u_n =((2b)/3) .
un+2=12(un+un+1)2un+2=un+un+12un+2un+1un=0thecaracteristicequationis2x2x1=0wehaveΔ=14(2)(1)=9x1=1+34=1andx2=134=12un=α+β(12)nu0=aα+β=a,u1=bαβ2=b3β2=abβ=23(ab),α=aβ=a23(ab)=a+2b3un=a+2b3+2a2b3(12)n2)a=0un=2b32b3(12)nbutlimn(12)n=0limnun=2b3.

Leave a Reply

Your email address will not be published. Required fields are marked *