Menu Close

let-U-0-cos-pi-3-and-U-n-1-1-U-n-2-find-U-n-interms-of-n-




Question Number 57407 by Abdo msup. last updated on 03/Apr/19
let U_0 =cos((π/3)) and U_(n+1) =(√((1+U_n )/2))  find U_n  interms of n .
letU0=cos(π3)andUn+1=1+Un2findUnintermsofn.
Commented by Abdo msup. last updated on 05/Apr/19
we have U_1 =(√((1+U_o )/2))=(√((1+cos((π/3)))/2))  =cos((π/(2.3)))  let suppose U_n =cos((π/(3.2^n )))  ⇒U_(n+1) =(√((1+U_n )/2))=(√((1+cos((π/(3.2^n ))))/2))  =(√((2cos^2 ((π/(3.2^(n+1) ))))/2))=cos((π/(3.2^(n+1) )))  so for all n  U_n =cos((π/(3.2^n )))   and lim_(n→+∞)  U_n =cos(0)=1 .
wehaveU1=1+Uo2=1+cos(π3)2=cos(π2.3)letsupposeUn=cos(π3.2n)Un+1=1+Un2=1+cos(π3.2n)2=2cos2(π3.2n+1)2=cos(π3.2n+1)soforallnUn=cos(π3.2n)andlimn+Un=cos(0)=1.

Leave a Reply

Your email address will not be published. Required fields are marked *