Menu Close

let-u-0-gt-0-and-n-N-u-n-1-u-n-1-u-n-1-prove-that-u-n-is-increasing-and-lim-u-n-2-by-consideringthe-function-t-1-2t-x-prove-that-n-N-k-1-n-1-2k-x-1-2-ln-1-2n-x-




Question Number 40878 by prof Abdo imad last updated on 28/Jul/18
let u_0 >0 and ∀n∈N  u_(n+1) =u_n  +(1/u_n )  1) prove that (u_n )is increasing and lim u_n  =+∞  2)by consideringthe functionϕ(t)=(1/(2t+x))  prove that ∀n∈N Σ_(k=1) ^n  (1/(2k+x)) ≤(1/2)ln(1+((2n)/x))  3)find a equivalent of u_n (n→+∞)
letu0>0andnNun+1=un+1un1)provethat(un)isincreasingandlimun=+2)byconsideringthefunctionφ(t)=12t+xprovethatnNk=1n12k+x12ln(1+2nx)3)findaequivalentofun(n+)

Leave a Reply

Your email address will not be published. Required fields are marked *