Menu Close

Let-u-1-1-u-2-1-and-u-n-2-u-n-1-u-n-find-u-n-




Question Number 121832 by bemath last updated on 12/Nov/20
  Let  { ((u_1 =1)),((u_2 =1)) :} and u_(n+2)  = u_(n+1)  + u_n   find u_n .
Let{u1=1u2=1andun+2=un+1+unfindun.
Commented by bemath last updated on 12/Nov/20
thank you both
thankyouboth
Answered by mr W last updated on 12/Nov/20
q^2 −q−1=0  q=((1±(√5))/2)  u_n =A(((1+(√5))/2))^n +B(((1−(√5))/2))^n   u_0 =A+B=u_2 −u_1 =1−1=0  ⇒A=−B  u_1 =A(((1+(√5))/2))+B(((1−(√5))/2))=1  A[((1+(√5))/2)−((1−(√5))/2)]=1  ⇒A=(1/( (√5)))  ⇒B=−(1/( (√5)))  ⇒u_n =(1/( (√5)))[(((1+(√5))/2))^n −(((1−(√5))/2))^n ]
q2q1=0q=1±52un=A(1+52)n+B(152)nu0=A+B=u2u1=11=0A=Bu1=A(1+52)+B(152)=1A[1+52152]=1A=15B=15un=15[(1+52)n(152)n]
Answered by Dwaipayan Shikari last updated on 12/Nov/20
u_(n+2) =u_(n+1) +u_n   r^(n+2) =r^(n+1) +r^n   r^2 −r−1=0⇒r=((1±(√5))/2)  u_n =Λ(((1+(√5))/2))^n +Γ(((1−(√5))/2))^n   u_1 =((Λ+Γ)/2)+(√5)((Λ−Γ)/2)=1  u_2 =3((Λ+Γ)/2)+(√5)((Λ−Γ)/2)=1     ⇒Λ+Γ=0⇒Λ=−Γ  1=(((√5)(−2Γ))/2)⇒Γ=−(1/( (√5)))    and  Λ=(1/( (√5)))  u_n =(1/( (√5)))(((1+(√5))/2))^n −(1/( (√5)))(((1−(√5))/2))^n   Fibonocci sequence
un+2=un+1+unrn+2=rn+1+rnr2r1=0r=1±52un=Λ(1+52)n+Γ(152)nu1=Λ+Γ2+5ΛΓ2=1u2=3Λ+Γ2+5ΛΓ2=1Λ+Γ=0Λ=Γ1=5(2Γ)2Γ=15andΛ=15un=15(1+52)n15(152)nFibonoccisequence

Leave a Reply

Your email address will not be published. Required fields are marked *