Menu Close

let-U-n-0-1-1-x-n-ln-2-xdx-1-lim-U-n-2-equivalent-of-U-n-n-




Question Number 172996 by Mathspace last updated on 04/Jul/22
let U_n =∫_0 ^1 (√(1−x^n ))ln^2 xdx  1)lim U_n ?  2)equivalent of U_n (n→∞)
$${let}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{x}^{{n}} }{ln}^{\mathrm{2}} {xdx} \\ $$$$\left.\mathrm{1}\right){lim}\:{U}_{{n}} ? \\ $$$$\left.\mathrm{2}\right){equivalent}\:{of}\:{U}_{{n}} \left({n}\rightarrow\infty\right) \\ $$
Answered by aleks041103 last updated on 05/Jul/22
U_n =∫_0 ^1 (√(1−x^n ))ln^2 x dx⇒x∈(0,1)  ⇒lim_(n→∞) x^n =0  ⇒lim_(n→∞) U_n =∫_0 ^1 (√(1−0))ln^2 xdx=∫_0 ^1 ln^2 x dx  x=e^(−t) ,x∈(0,1)⇒t∈(∞,0)⇒dx=−e^(−t) dt  ∫_0 ^1 ln^2 x dx=∫_∞ ^( 0) ln^2 (e^(−t) )(−e^t dt)=  =∫_0 ^∞ t^2 e^(−t) dt=2  ⇒lim_(n→∞) U_n =2
$${U}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{x}^{{n}} }{ln}^{\mathrm{2}} {x}\:{dx}\Rightarrow{x}\in\left(\mathrm{0},\mathrm{1}\right) \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {{lim}x}^{{n}} =\mathrm{0} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {{lim}U}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−\mathrm{0}}{ln}^{\mathrm{2}} {xdx}=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}^{\mathrm{2}} {x}\:{dx} \\ $$$${x}={e}^{−{t}} ,{x}\in\left(\mathrm{0},\mathrm{1}\right)\Rightarrow{t}\in\left(\infty,\mathrm{0}\right)\Rightarrow{dx}=−{e}^{−{t}} {dt} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}^{\mathrm{2}} {x}\:{dx}=\int_{\infty} ^{\:\mathrm{0}} {ln}^{\mathrm{2}} \left({e}^{−{t}} \right)\left(−{e}^{{t}} {dt}\right)= \\ $$$$=\int_{\mathrm{0}} ^{\infty} {t}^{\mathrm{2}} {e}^{−{t}} {dt}=\mathrm{2} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {{lim}U}_{{n}} =\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *