Question Number 32042 by abdo imad last updated on 18/Mar/18
$${let}\:{u}_{{n}} \:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{x}^{{n}} \:{sin}\left(\pi{x}\right){dx} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\Sigma\:{u}_{{n}} \:{converges} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\Sigma\:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{sint}}{{t}}{dt}\:. \\ $$
Commented by abdo imad last updated on 20/Mar/18
$${let}\:{put}\:{S}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{k}} \:{sin}\left(\pi{x}\right){dx} \\ $$$${S}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\sum_{{k}=\mathrm{0}} ^{{n}} \:{x}^{{k}} \right){sin}\left(\pi{x}\right){dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}−{x}^{{n}+\mathrm{1}} }{\mathrm{1}−{x}}\:{sin}\left(\pi{x}\right){dx} \\ $$$$\Rightarrow\:{S}_{{n}\:} \:−\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{sin}\left(\pi{x}\right)}{\mathrm{1}−{x}}{dx}\:=\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{{n}+\mathrm{1}} }{\mathrm{1}−{x}}\:{sin}\left(\pi{x}\right){dx}\:{and}\:\exists{m}>\mathrm{0}/ \\ $$$$\mid\:{S}_{{n}} \:−\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{sin}\left(\pi{x}\right)}{\mathrm{1}−{x}}{dx}\mid\:\:\leqslant\:{m}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}+\mathrm{1}} {dx}\:=\frac{{m}}{{n}+\mathrm{2}}\:\rightarrow_{{n}\rightarrow\infty} \mathrm{0} \\ $$$$\Rightarrow\:{S}_{{n}} {converged}\:{and}\:{lim}\:{S}_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{sin}\left(\pi{x}\right)}{\mathrm{1}−{x}}\:{dx} \\ $$$$\left.\mathrm{2}\right)\:{ch}\:.\mathrm{1}−{x}={t}\:{give}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{sin}\left(\pi{x}\right)}{\mathrm{1}−{x}}\:{dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{sin}\left(\pi\left(\mathrm{1}−{t}\right)\right)}{{t}}=\:{dt} \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{sin}\left(\pi{t}\right)}{{t}}\:{dt}\:{after}\:{ch}.\:\pi{t}\:={u}\:{give} \\ $$$${lim}\:_{{n}\rightarrow\infty} \:{S}_{{n}} =\:\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{sin}\left({u}\right)}{\frac{{u}}{\pi}}\:\frac{{du}}{\pi}\:=\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{sinu}}{{u}}\:{du}\:.\:{so} \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{sinu}}{{u}}\:{du}\:\:. \\ $$