Menu Close

let-u-n-0-1-x-n-sin-pix-dx-1-prove-that-u-n-converges-2-prove-that-u-n-0-pi-sint-t-dt-




Question Number 32042 by abdo imad last updated on 18/Mar/18
let u_n   =∫_0 ^1   x^n  sin(πx)dx  1) prove that Σ u_n  converges  2) prove that Σ u_n = ∫_0 ^π   ((sint)/t)dt .
$${let}\:{u}_{{n}} \:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{x}^{{n}} \:{sin}\left(\pi{x}\right){dx} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\Sigma\:{u}_{{n}} \:{converges} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\Sigma\:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{sint}}{{t}}{dt}\:. \\ $$
Commented by abdo imad last updated on 20/Mar/18
let put S_n =Σ_(k=0) ^n  ∫_0 ^1  x^k  sin(πx)dx  S_n = ∫_0 ^1 (Σ_(k=0) ^n  x^k )sin(πx)dx =∫_0 ^1  ((1−x^(n+1) )/(1−x)) sin(πx)dx  ⇒ S_(n )  − ∫_0 ^1   ((sin(πx))/(1−x))dx = −∫_0 ^1   (x^(n+1) /(1−x)) sin(πx)dx and ∃m>0/  ∣ S_n  − ∫_0 ^1   ((sin(πx))/(1−x))dx∣  ≤ m ∫_0 ^1  x^(n+1) dx =(m/(n+2)) →_(n→∞) 0  ⇒ S_n converged and lim S_n  = ∫_0 ^1   ((sin(πx))/(1−x)) dx  2) ch .1−x=t give ∫_0 ^1   ((sin(πx))/(1−x)) dx =∫_0 ^1   ((sin(π(1−t)))/t)= dt  = ∫_0 ^1   ((sin(πt))/t) dt after ch. πt =u give  lim _(n→∞)  S_n =  ∫_0 ^π   ((sin(u))/(u/π)) (du/π) =∫_0 ^π    ((sinu)/u) du . so  Σ_(n=0) ^∞  u_n = ∫_0 ^π   ((sinu)/u) du  .
$${let}\:{put}\:{S}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{k}} \:{sin}\left(\pi{x}\right){dx} \\ $$$${S}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\sum_{{k}=\mathrm{0}} ^{{n}} \:{x}^{{k}} \right){sin}\left(\pi{x}\right){dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}−{x}^{{n}+\mathrm{1}} }{\mathrm{1}−{x}}\:{sin}\left(\pi{x}\right){dx} \\ $$$$\Rightarrow\:{S}_{{n}\:} \:−\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{sin}\left(\pi{x}\right)}{\mathrm{1}−{x}}{dx}\:=\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{{n}+\mathrm{1}} }{\mathrm{1}−{x}}\:{sin}\left(\pi{x}\right){dx}\:{and}\:\exists{m}>\mathrm{0}/ \\ $$$$\mid\:{S}_{{n}} \:−\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{sin}\left(\pi{x}\right)}{\mathrm{1}−{x}}{dx}\mid\:\:\leqslant\:{m}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}+\mathrm{1}} {dx}\:=\frac{{m}}{{n}+\mathrm{2}}\:\rightarrow_{{n}\rightarrow\infty} \mathrm{0} \\ $$$$\Rightarrow\:{S}_{{n}} {converged}\:{and}\:{lim}\:{S}_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{sin}\left(\pi{x}\right)}{\mathrm{1}−{x}}\:{dx} \\ $$$$\left.\mathrm{2}\right)\:{ch}\:.\mathrm{1}−{x}={t}\:{give}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{sin}\left(\pi{x}\right)}{\mathrm{1}−{x}}\:{dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{sin}\left(\pi\left(\mathrm{1}−{t}\right)\right)}{{t}}=\:{dt} \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{sin}\left(\pi{t}\right)}{{t}}\:{dt}\:{after}\:{ch}.\:\pi{t}\:={u}\:{give} \\ $$$${lim}\:_{{n}\rightarrow\infty} \:{S}_{{n}} =\:\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{sin}\left({u}\right)}{\frac{{u}}{\pi}}\:\frac{{du}}{\pi}\:=\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{sinu}}{{u}}\:{du}\:.\:{so} \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{sinu}}{{u}}\:{du}\:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *