Menu Close

let-U-n-0-arctan-nt-1-n-2-t-2-dt-with-n-natural-1-1-calculate-U-n-2-calculate-lim-n-n-2-U-n-3-study-the-convergence-of-U-n-




Question Number 62812 by mathmax by abdo last updated on 25/Jun/19
let U_n =∫_0 ^(+∞)   ((arctan(nt))/(1+n^2 t^2 ))dt    with n natural≥1  1) calculate U_n   2) calculate lim_(n→+∞)  n^2  U_n   3) study the convergence of Σ U_n
letUn=0+arctan(nt)1+n2t2dtwithnnatural11)calculateUn2)calculatelimn+n2Un3)studytheconvergenceofΣUn
Commented by mathmax by abdo last updated on 26/Jun/19
1) by parts  u^′  =(1/(1+n^2 t^2 ))  and v =arctan(nt) ⇒  U_n =[(1/n) (arctan(nt))^2 ]_0 ^(+∞)  −∫_0 ^∞ (1/n) arctan(nt)(n/(1+n^2 t^2 ))dt  =(π^2 /(4n)) −∫_0 ^∞    ((arctan(nt))/(1+n^2 t^2 ))dt =(π^2 /(4n)) −U_n  ⇒2U_n =(π^2 /(4n)) ⇒ U_n =(π^2 /(8n))  2)we have n^2  U_n =((nπ^2 )/8) ⇒lim_(n→+∞) n^2 U_n =+∞  3)the numeric serie Σ(π^2 /(8n))  diverges ⇒Σ U_n  diverges.
1)bypartsu=11+n2t2andv=arctan(nt)Un=[1n(arctan(nt))2]0+01narctan(nt)n1+n2t2dt=π24n0arctan(nt)1+n2t2dt=π24nUn2Un=π24nUn=π28n2)wehaven2Un=nπ28limn+n2Un=+3)thenumericserieΣπ28ndivergesΣUndiverges.

Leave a Reply

Your email address will not be published. Required fields are marked *