Question Number 62812 by mathmax by abdo last updated on 25/Jun/19
$${let}\:{U}_{{n}} =\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{arctan}\left({nt}\right)}{\mathrm{1}+{n}^{\mathrm{2}} {t}^{\mathrm{2}} }{dt}\:\:\:\:{with}\:{n}\:{natural}\geqslant\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{U}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{lim}_{{n}\rightarrow+\infty} \:{n}^{\mathrm{2}} \:{U}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{study}\:{the}\:{convergence}\:{of}\:\Sigma\:{U}_{{n}} \\ $$
Commented by mathmax by abdo last updated on 26/Jun/19
$$\left.\mathrm{1}\right)\:{by}\:{parts}\:\:{u}^{'} \:=\frac{\mathrm{1}}{\mathrm{1}+{n}^{\mathrm{2}} {t}^{\mathrm{2}} }\:\:{and}\:{v}\:={arctan}\left({nt}\right)\:\Rightarrow \\ $$$${U}_{{n}} =\left[\frac{\mathrm{1}}{{n}}\:\left({arctan}\left({nt}\right)\right)^{\mathrm{2}} \right]_{\mathrm{0}} ^{+\infty} \:−\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{n}}\:{arctan}\left({nt}\right)\frac{{n}}{\mathrm{1}+{n}^{\mathrm{2}} {t}^{\mathrm{2}} }{dt} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{4}{n}}\:−\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left({nt}\right)}{\mathrm{1}+{n}^{\mathrm{2}} {t}^{\mathrm{2}} }{dt}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{4}{n}}\:−{U}_{{n}} \:\Rightarrow\mathrm{2}{U}_{{n}} =\frac{\pi^{\mathrm{2}} }{\mathrm{4}{n}}\:\Rightarrow\:{U}_{{n}} =\frac{\pi^{\mathrm{2}} }{\mathrm{8}{n}} \\ $$$$\left.\mathrm{2}\right){we}\:{have}\:{n}^{\mathrm{2}} \:{U}_{{n}} =\frac{{n}\pi^{\mathrm{2}} }{\mathrm{8}}\:\Rightarrow{lim}_{{n}\rightarrow+\infty} {n}^{\mathrm{2}} {U}_{{n}} =+\infty \\ $$$$\left.\mathrm{3}\right){the}\:{numeric}\:{serie}\:\Sigma\frac{\pi^{\mathrm{2}} }{\mathrm{8}{n}}\:\:{diverges}\:\Rightarrow\Sigma\:{U}_{{n}} \:{diverges}. \\ $$