Menu Close

let-U-n-0-cos-nx-x-2-n-2-3-dx-with-n-1-1-calculate-U-n-intrems-of-n-2-find-lim-n-n-U-n-3-calculate-lim-n-n-2-U-n-4-study-the-convervence-of-U-n-




Question Number 62128 by maxmathsup by imad last updated on 15/Jun/19
let U_n = ∫_0 ^∞   ((cos(nx))/((x^2  +n^2 )^3 ))dx  with n≥1  1) calculate U_n  intrems of n  2) find lim_(n→+∞) n U_n   3) calculate lim_(n→+∞) n^2  U_n   4) study the convervence of U_n
letUn=0cos(nx)(x2+n2)3dxwithn11)calculateUnintremsofn2)findlimn+nUn3)calculatelimn+n2Un4)studytheconvervenceofUn
Commented by maxmathsup by imad last updated on 16/Jun/19
1) U_n =∫_0 ^∞    ((cos(nx))/((x^2  +n^2 )^3 ))dx  changement x =nt give  U_n =∫_0 ^∞   ((cos(n^2 t))/((n^2 t^2 +n^2 )^3 )) ndt =(1/n^5 ) ∫_0 ^∞    ((cos(n^2 t))/((t^2  +1)^3 )) dt ⇒2n^5  U_n =∫_(−∞) ^(+∞)   ((cos(n^2 t))/((t^2  +1)^3 ))dt  =Re(∫_(−∞) ^(+∞)   (e^(in^2 t) /((t^2  +1)^3 ))dt)  let consider thecomplex function ϕ(z)=(e^(in^2 z) /((z^2  +1)^3 ))  we have ϕ(z)=(e^(inz^2 ) /((z−i)^3 (z+i)^3 ))  the poles of ϕ are +^− i (triples) residus theorem  give ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i) =lim_(z→i)    (1/((3−1)!)){(z−i)^3 ϕ(z)}^((2))   =lim_(z→i)  (1/2){ (e^(in^2 z) /((z+i)^3 ))}^((2))   but  { (e^(in^2 z) /((z+i)^3 ))}^((2))  ={((in^2 e^(in^2 z) (z+i)^3 −3(z+i)^2 e^(in^2 z) )/((z+i)^6 ))}^((1))   ={(((in^2 (z+i)−3)e^(in^2 z) )/((z+i)^4 ))}^((1))  ={(((in^2 z−n^2 −3)e^(in^2 z) )/((z+i)^4 ))}^((1))   =(((in^2  +in^2 (in^2 z−n^2 −3))e^(in^2 z) (z+i)^4  −4(z+i)^3 (in^2 z−n^2 −3)e^(in^2 z) )/((z+i)^8 ))  =(({(in^2 −n^4 z −in^4 −3in^2 )(z+i)−4in^2 z+4n^2  +12}e^(in^2 z) )/((z+i)^5 )) ⇒  Res(ϕ,i) =(1/2) (({ 2i(in^2 −n^4 i−in^4 −3in^2 ) +4n^2  +4n^2  +12}e^(−n^2 ) )/((2i)^5 ))  =(1/2^6 ) (({−2n^2 +2n^4 +2n^4  +6n^2  +8n^2  +12}e^(−n^2 ) )/i) =(1/(i 2^6 )){12n^2  +4n^4  +12}e^(−n^2 )   =(4/(i 2^6 )){ 3n^2  +n^4  +3}e^(−n^2 )  = (1/(16i)){n^4  +3n^2  +3} e^(−n^2  )  ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =((2iπ)/(16i)){ n^4  +3n^2  +3}e^(−n^2 )  =(π/8)(n^4 +3n^2  +3)e^(−n^2 )  =2n^5  U_n  ⇒  U_n =(π/(16n^5 ))(n^4  +3n^2  +3)e^(−n^2 )   3) n^2  U_n =(π/(16n^3 ))(n^4  +3n^2  +3)e^(−n^2 )    =(π/(16))(n +3 +(3/n^3 ))e^(−n^2 )  ⇒  lim_(n→+∞) n^2  U_n =lim_(n→+∞) (π/(16))(n+3)e^(−n^2 )  =0
1)Un=0cos(nx)(x2+n2)3dxchangementx=ntgiveUn=0cos(n2t)(n2t2+n2)3ndt=1n50cos(n2t)(t2+1)3dt2n5Un=+cos(n2t)(t2+1)3dt=Re(+ein2t(t2+1)3dt)letconsiderthecomplexfunctionφ(z)=ein2z(z2+1)3wehaveφ(z)=einz2(zi)3(z+i)3thepolesofφare+i(triples)residustheoremgive+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(31)!{(zi)3φ(z)}(2)=limzi12{ein2z(z+i)3}(2)but{ein2z(z+i)3}(2)={in2ein2z(z+i)33(z+i)2ein2z(z+i)6}(1)={(in2(z+i)3)ein2z(z+i)4}(1)={(in2zn23)ein2z(z+i)4}(1)=(in2+in2(in2zn23))ein2z(z+i)44(z+i)3(in2zn23)ein2z(z+i)8={(in2n4zin43in2)(z+i)4in2z+4n2+12}ein2z(z+i)5Res(φ,i)=12{2i(in2n4iin43in2)+4n2+4n2+12}en2(2i)5=126{2n2+2n4+2n4+6n2+8n2+12}en2i=1i26{12n2+4n4+12}en2=4i26{3n2+n4+3}en2=116i{n4+3n2+3}en2+φ(z)dz=2iπ16i{n4+3n2+3}en2=π8(n4+3n2+3)en2=2n5UnUn=π16n5(n4+3n2+3)en23)n2Un=π16n3(n4+3n2+3)en2=π16(n+3+3n3)en2limn+n2Un=limn+π16(n+3)en2=0
Commented by maxmathsup by imad last updated on 16/Jun/19
2) we have nU_n =(π/(16n^4 ))(n^4  +3n^2  +3) e^(−n^2 )  ⇒lim_(n→+∞ ) nU_n =  lim_(n→+∞) (π/(16)) e^(−n^2 )  =0
2)wehavenUn=π16n4(n4+3n2+3)en2limn+nUn=limn+π16en2=0
Commented by maxmathsup by imad last updated on 16/Jun/19
4) the Q is study the convergence of Σ U_n
4)theQisstudytheconvergenceofΣUn

Leave a Reply

Your email address will not be published. Required fields are marked *