Question Number 61660 by maxmathsup by imad last updated on 05/Jun/19
$${let}\:{U}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{{n}} }\:{dt}\:\:\:\:\left({n}\geqslant\mathrm{1}\right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\frac{{U}_{{n}+\mathrm{1}} }{{U}_{{n}} } \\ $$$$\left.\mathrm{2}\right)\:{study}\:{the}\:{serie}\:\Sigma{ln}\left(\frac{{U}_{{n}+\mathrm{1}} }{{U}_{{n}} }\right)\:\:{and}\:{prove}\:\:{that}\:{lim}_{{n}\rightarrow+\infty} {U}_{{n}} =\mathrm{0} \\ $$
Commented by prof Abdo imad last updated on 07/Jun/19
$$\left.\mathrm{1}\right)\:{we}\:{have}\:\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}+{t}^{\mathrm{3}} }{\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{{n}+\mathrm{1}} }\:{dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{{n}+\mathrm{1}} }\:+\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{\mathrm{3}} }{\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{{n}+\mathrm{1}} }\:{dt} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{{n}+\mathrm{1}} }\:={U}_{{n}+\mathrm{1}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\mathrm{3}} }{\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{{n}+\mathrm{1}} }\:{dt}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} \:{t}\:\left(\mathrm{3}{t}^{\mathrm{2}} \right)\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{−{n}−\mathrm{1}} \:{dt}\:{by}\:{parts} \\ $$$${u}\:={t}\:\:\:\:{and}\:{v}^{,} \:=\left(\mathrm{3}{t}^{\mathrm{2}} \right)\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{−{n}−\mathrm{1}} \:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{\mathrm{3}} }{\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{{n}+\mathrm{1}} }\:{dt}\:= \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}\left\{\:\:\left[−\frac{{t}}{{n}}\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{−{n}} \right]_{\mathrm{0}} ^{\infty} \:+\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}}\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{−{n}} {dt}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}{n}}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{{n}} }\:=\frac{\mathrm{1}}{\mathrm{3}{n}}\:{U}_{{n}} \:\Rightarrow \\ $$$${U}_{{n}} =\:{U}_{{n}+\mathrm{1}} +\frac{\mathrm{1}}{\mathrm{3}{n}}\:{U}_{{n}} \:\Rightarrow\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}{n}}\right){U}_{{n}} ={U}_{{n}+\mathrm{1}} \:\:\Rightarrow \\ $$$$\left(\frac{\mathrm{3}{n}−\mathrm{1}}{\mathrm{3}{n}}\right){U}_{{n}} ={U}_{{n}+\mathrm{1}} \:\Rightarrow\frac{{U}_{{n}+\mathrm{1}} }{{U}_{{n}} }\:=\:\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}{n}} \\ $$