let-U-n-0-dt-1-t-3-n-dt-n-1-1-calculate-U-n-1-U-n-2-study-the-serie-ln-U-n-1-U-n-and-prove-that-lim-n-U-n-0- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 61660 by maxmathsup by imad last updated on 05/Jun/19 letUn=∫0∞dt(1+t3)ndt(n⩾1)1)calculateUn+1Un2)studytheserieΣln(Un+1Un)andprovethatlimn→+∞Un=0 Commented by prof Abdo imad last updated on 07/Jun/19 1)wehaveUn=∫0∞1+t3(1+t3)n+1dt=∫0∞dt(1+t3)n+1+∫0∞t3(1+t3)n+1dt∫0∞dt(1+t3)n+1=Un+1∫0∞t3(1+t3)n+1dt=13∫0∞t(3t2)(1+t3)−n−1dtbypartsu=tandv,=(3t2)(1+t3)−n−1⇒∫0∞t3(1+t3)n+1dt=13{[−tn(1+t3)−n]0∞+∫0∞1n(1+t3)−ndt}=13n∫0∞dt(1+t3)n=13nUn⇒Un=Un+1+13nUn⇒(1−13n)Un=Un+1⇒(3n−13n)Un=Un+1⇒Un+1Un=1−13n Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: a-x-1-ax-dx-a-gt-0-Next Next post: 1-calculate-R-2-dxdy-1-x-2-1-y-2-2-find-the-value-of-0-ln-x-x-2-1-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.