Menu Close

let-U-n-0-dt-1-t-3-n-dt-n-1-1-calculate-U-n-1-U-n-2-study-the-serie-ln-U-n-1-U-n-and-prove-that-lim-n-U-n-0-




Question Number 61660 by maxmathsup by imad last updated on 05/Jun/19
let U_n = ∫_0 ^∞     (dt/((1+t^3 )^n )) dt    (n≥1)  1) calculate (U_(n+1) /U_n )  2) study the serie Σln((U_(n+1) /U_n ))  and prove  that lim_(n→+∞) U_n =0
letUn=0dt(1+t3)ndt(n1)1)calculateUn+1Un2)studytheserieΣln(Un+1Un)andprovethatlimn+Un=0
Commented by prof Abdo imad last updated on 07/Jun/19
1) we have  U_n =∫_0 ^∞   ((1+t^3 )/((1+t^3 )^(n+1) )) dt  =∫_0 ^∞   (dt/((1+t^3 )^(n+1) )) +∫_0 ^∞   (t^3 /((1+t^3 )^(n+1) )) dt  ∫_0 ^∞   (dt/((1+t^3 )^(n+1) )) =U_(n+1)   ∫_0 ^∞ (t^3 /((1+t^3 )^(n+1) )) dt = (1/3)∫_0 ^∞  t (3t^2 )(1+t^3 )^(−n−1)  dt by parts  u =t    and v^,  =(3t^2 )(1+t^3 )^(−n−1)  ⇒  ∫_0 ^∞   (t^3 /((1+t^3 )^(n+1) )) dt =  (1/3){  [−(t/n)(1+t^3 )^(−n) ]_0 ^∞  +∫_0 ^∞   (1/n)(1+t^3 )^(−n) dt}  =(1/(3n)) ∫_0 ^∞    (dt/((1+t^3 )^n )) =(1/(3n)) U_n  ⇒  U_n = U_(n+1) +(1/(3n)) U_n  ⇒(1−(1/(3n)))U_n =U_(n+1)   ⇒  (((3n−1)/(3n)))U_n =U_(n+1)  ⇒(U_(n+1) /U_n ) = 1−(1/(3n))
1)wehaveUn=01+t3(1+t3)n+1dt=0dt(1+t3)n+1+0t3(1+t3)n+1dt0dt(1+t3)n+1=Un+10t3(1+t3)n+1dt=130t(3t2)(1+t3)n1dtbypartsu=tandv,=(3t2)(1+t3)n10t3(1+t3)n+1dt=13{[tn(1+t3)n]0+01n(1+t3)ndt}=13n0dt(1+t3)n=13nUnUn=Un+1+13nUn(113n)Un=Un+1(3n13n)Un=Un+1Un+1Un=113n

Leave a Reply

Your email address will not be published. Required fields are marked *