Menu Close

let-u-n-0-dt-1-t-n-find-nature-of-u-n-and-u-n-n-2-and-u-n-n-3-




Question Number 48068 by maxmathsup by imad last updated on 18/Nov/18
let u_n =∫_0 ^∞   (dt/(1+t^n ))  find nature of Σ u_n     and Σ (u_n /n^2 )  and Σ (u_n /n^3 )
letun=0dt1+tnfindnatureofΣunandΣunn2andΣunn3
Commented by Abdo msup. last updated on 19/Nov/18
changement t^n =x give t=x^(1/n)  ⇒  u_n = ∫_0 ^∞    (1/(1+x)) (1/n)x^((1/n)−1) dx =(1/n) ∫_0 ^∞   (x^((1/n)−1) /(1+x))dx  =(1/n) (π/(sin((π/n)))) ⇒ u_n = (π/(nsin((π/n))))  2)we have u_n ∼ (π/(n.(π/n))) ⇒u_n →1(n→+∞) so Σ u_n  diverge  because u_n dont converge to 0) also  (u_n /n^2 ) ∼ (1/n^2 ) and Σ (1/n^2 ) converge ⇒Σ (u_n /n^2 ) converge  (u_n /n^3 ) ∼ (1/n^3 ) and?Σ(1/n^3 ) converges ⇒Σ(u_n /n^3 ) converges.
changementtn=xgivet=x1nun=011+x1nx1n1dx=1n0x1n11+xdx=1nπsin(πn)un=πnsin(πn)2)wehaveunπn.πnun1(n+)soΣundivergebecauseundontconvergeto0)alsounn21n2andΣ1n2convergeΣunn2convergeunn31n3and?Σ1n3convergesΣunn3converges.
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Nov/18
t^n =tan^2 θ   nt^(n−1) dt=2tanθsec^2 θdθ  ∫_0 ^(π/2) ((2tanθsec^2 θdθ)/(sec^2 θ×n(tan^2 θ)^((n−1)/n) ))  =(2/n)∫_0 ^(π/2)  (tanθ)^(1−((2n−2)/n)) dθ  (2/n)∫_0 ^(π/2) (((sinθ)^((2−n)/n) )/((cosθ)^((2−n)/n) ))dθ  (2/n)∫(sinθ)^((2−n)/2) ×(cosθ)^((n−2)/n) dθ  2p−1=((2−n)/2)   p=((4−n)/4)=(1−(n/4))  2q−1=((n−2)/2)   2q=(n/2)   q=(n/4)  now formula 2∫_0 ^(π/2) (sinθ)^(2p−1) (cosθ)^(2q−1) dθ  =((⌈(p)⌈(q))/(⌈(p+q)))  =(1/n)×((⌈(1−(n/4))⌈((n/4)))/(⌈(1)))  =(1/n)×(π/(sin(((nπ)/4))))=(π/n)×(1/(sin(((nπ)/4))))  so u_n =(π/n)×(1/(sin(((nπ)/4))))
tn=tan2θntn1dt=2tanθsec2θdθ0π22tanθsec2θdθsec2θ×n(tan2θ)n1n=2n0π2(tanθ)12n2ndθ2n0π2(sinθ)2nn(cosθ)2nndθ2n(sinθ)2n2×(cosθ)n2ndθ2p1=2n2p=4n4=(1n4)2q1=n222q=n2q=n4nowformula20π2(sinθ)2p1(cosθ)2q1dθ=(p)(q)(p+q)=1n×(1n4)(n4)(1)=1n×πsin(nπ4)=πn×1sin(nπ4)soun=πn×1sin(nπ4)

Leave a Reply

Your email address will not be published. Required fields are marked *