Menu Close

let-U-n-0-e-n-x-2-x-2-3-dx-1-calculate-U-n-interms-of-n-2-find-lim-n-n-U-n-3-determine-nature-of-the-serie-U-n-




Question Number 60263 by maxmathsup by imad last updated on 19/May/19
let U_n =∫_0 ^∞    (e^(−n[x^2 ]) /(x^2 +3)) dx   1) calculate U_n  interms of n  2) find lim_(n→+∞)  n U_n   3)determine nature of the serie  Σ U_n
letUn=0en[x2]x2+3dx1)calculateUnintermsofn2)findlimn+nUn3)determinenatureoftheserieΣUn
Commented by maxmathsup by imad last updated on 20/May/19
1) we have 2U_n =∫_(−∞) ^(+∞)  (e^(−n[x^2 ]) /(x^2  +3)) dx   let ϕ(z) =(e^(−n[z^2 ]) /(z^2  +3))   we have  ϕ(z) = (e^(−n[z^2 ]) /((z−i(√3))(z+i(√3))))  so the poles of ϕ are +^− i(√3)  residus theorem give  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπRes(ϕ,i(√3)3  Res(ϕ,i) =lim_(z→i(√3)) (z−i(√3))ϕ(z) =lim_(z→i)   (e^(−n[z^2 ]) /(z+i(√3))) =(e^(−n[−3]) /(2i(√3)))  =(e^(3n) /(2i(√3))) ⇒ ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ (e^(3n) /(2i(√3))) =(π/( (√3))) e^(3n)  ⇒ U_n =(π/(2(√3))) e^(3n)  .  2)  lim_(n→+∞)  nU_n =+∞  3) its clear that Σ U_n  diverges ..
1)wehave2Un=+en[x2]x2+3dxletφ(z)=en[z2]z2+3wehaveφ(z)=en[z2](zi3)(z+i3)sothepolesofφare+i3residustheoremgive+φ(z)dz=2iπRes(φ,i33Res(φ,i)=limzi3(zi3)φ(z)=limzien[z2]z+i3=en[3]2i3=e3n2i3+φ(z)dz=2iπe3n2i3=π3e3nUn=π23e3n.2)limn+nUn=+3)itsclearthatΣUndiverges..

Leave a Reply

Your email address will not be published. Required fields are marked *