Question Number 60263 by maxmathsup by imad last updated on 19/May/19
$${let}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−{n}\left[{x}^{\mathrm{2}} \right]} }{{x}^{\mathrm{2}} +\mathrm{3}}\:{dx}\: \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{U}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{n}\:{U}_{{n}} \\ $$$$\left.\mathrm{3}\right){determine}\:{nature}\:{of}\:{the}\:{serie}\:\:\Sigma\:{U}_{{n}} \\ $$
Commented by maxmathsup by imad last updated on 20/May/19
$$\left.\mathrm{1}\right)\:{we}\:{have}\:\mathrm{2}{U}_{{n}} =\int_{−\infty} ^{+\infty} \:\frac{{e}^{−{n}\left[{x}^{\mathrm{2}} \right]} }{{x}^{\mathrm{2}} \:+\mathrm{3}}\:{dx}\:\:\:{let}\:\varphi\left({z}\right)\:=\frac{{e}^{−{n}\left[{z}^{\mathrm{2}} \right]} }{{z}^{\mathrm{2}} \:+\mathrm{3}}\:\:\:{we}\:{have} \\ $$$$\varphi\left({z}\right)\:=\:\frac{{e}^{−{n}\left[{z}^{\mathrm{2}} \right]} }{\left({z}−{i}\sqrt{\mathrm{3}}\right)\left({z}+{i}\sqrt{\mathrm{3}}\right)}\:\:{so}\:{the}\:{poles}\:{of}\:\varphi\:{are}\:\overset{−} {+}{i}\sqrt{\mathrm{3}}\:\:{residus}\:{theorem}\:{give} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi{Res}\left(\varphi,{i}\sqrt{\mathrm{3}}\mathrm{3}\right. \\ $$$${Res}\left(\varphi,{i}\right)\:={lim}_{{z}\rightarrow{i}\sqrt{\mathrm{3}}} \left({z}−{i}\sqrt{\mathrm{3}}\right)\varphi\left({z}\right)\:={lim}_{{z}\rightarrow{i}} \:\:\frac{{e}^{−{n}\left[{z}^{\mathrm{2}} \right]} }{{z}+{i}\sqrt{\mathrm{3}}}\:=\frac{{e}^{−{n}\left[−\mathrm{3}\right]} }{\mathrm{2}{i}\sqrt{\mathrm{3}}} \\ $$$$=\frac{{e}^{\mathrm{3}{n}} }{\mathrm{2}{i}\sqrt{\mathrm{3}}}\:\Rightarrow\:\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{{e}^{\mathrm{3}{n}} }{\mathrm{2}{i}\sqrt{\mathrm{3}}}\:=\frac{\pi}{\:\sqrt{\mathrm{3}}}\:{e}^{\mathrm{3}{n}} \:\Rightarrow\:{U}_{{n}} =\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}\:{e}^{\mathrm{3}{n}} \:. \\ $$$$\left.\mathrm{2}\right)\:\:{lim}_{{n}\rightarrow+\infty} \:{nU}_{{n}} =+\infty \\ $$$$\left.\mathrm{3}\right)\:{its}\:{clear}\:{that}\:\Sigma\:{U}_{{n}} \:{diverges}\:.. \\ $$