Menu Close

let-U-n-0-n-e-x-2-dx-2-0-n-e-nx-2-dx-1-calculate-lim-n-U-n-2-determne-nature-of-U-n-and-U-n-3-




Question Number 53464 by maxmathsup by imad last updated on 22/Jan/19
let U_n = (((∫_0 ^n  e^(−x^2 ) dx)^2 )/(∫_0 ^n   e^(−nx^2 ) dx))  1) calculate lim_(n→+∞)   U_n   2) determne nature of Σ  U_n   and Σ U_n ^3  .
letUn=(0nex2dx)20nenx2dx1)calculatelimn+Un2)determnenatureofΣUnandΣUn3.
Commented by maxmathsup by imad last updated on 24/Jan/19
we have ∫_0 ^n  e^(−nx^2 ) dx =_((√n)x=t)      ∫_0 ^(n(√n))  e^(−t^2 )  (dt/( (√n))) =(1/( (√n))) ∫_0 ^(n(√n))  e^(−t^2 ) dt ⇒  U_n =(√n)  (((∫_0 ^n  e^(−x^2 ) dx)^2 )/(∫_0 ^(n(√n)) e^(−t^2 ) dt))  but lim_(n→+∞)      (√n)=+∞  lim_(n→+∞)   (((∫_0 ^n  e^(−x^2 ) dx)^2 )/(∫_0 ^(n(√n)) e^(−t^2 ) dt)) =(((((√π)/2))^2 )/((√π)/2)) =((√π)/2) ⇒lim_(n→+∞)  U_n =+∞  2) we have  U_n  ∼ ((√(πn))/2)  ⇒Σ U_n   diverges also Σ U_n ^3   diverges.
wehave0nenx2dx=nx=t0nnet2dtn=1n0nnet2dtUn=n(0nex2dx)20nnet2dtbutlimn+n=+limn+(0nex2dx)20nnet2dt=(π2)2π2=π2limn+Un=+2)wehaveUnπn2ΣUndivergesalsoΣUn3diverges.
Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jan/19
I_1 =∫_0 ^∞ e^(−x^2 ) dx  and I_2 =∫_0 ^∞ e^(−nx^2 ) dx  calculating I_2   ∫_0 ^∞ e^(−nx^2 ) dx  t=nx^2   x=((√t)/( (√n)))   (dx/dt)=(1/( (√n)))×(1/2)×t^((1/2)−1) =(1/(2(√n) ))×t^((−1)/2)   ∫_0 ^∞ e^(−t) ×(1/(2(√n)))×t^((−1)/2) dt  =(1/(2(√n)))∫_0 ^∞ e^(−t) ×t^((1/2)−1) dt  =(1/(2(√n)))×⌈((1/2))=(1/(2(√n)))×(√π) =(1/2)×(√(π/n)) →value of I_2   I_1 =(1/2)×(√π)   lim_(n→∞) U_n =(I_1 ^2 /I_2 )=((π/4)/((1/2)×(√(π/n))))=((π×2×(√n))/(4×(√π)))=((√(nπ))/2)  sir pls che4k...
I1=0ex2dxandI2=0enx2dxcalculatingI20enx2dxt=nx2x=tndxdt=1n×12×t121=12n×t120et×12n×t12dt=12n0et×t121dt=12n×(12)=12n×π=12×πnvalueofI2I1=12×πlimnUn=I12I2=π412×πn=π×2×n4×π=nπ2sirplsche4k

Leave a Reply

Your email address will not be published. Required fields are marked *