Menu Close

let-u-n-0-sin-nx-2-x-2-6-dx-1-calculate-u-n-and-lim-u-n-n-2-find-nature-of-u-n-and-calaculate-it-3-find-nature-of-u-n-2-




Question Number 54777 by maxmathsup by imad last updated on 10/Feb/19
let u_n =∫_0 ^∞    ((sin(nx^2 ))/(x^2  +6))dx  1) calculate  u_n    and lim u_n (n→+∞)  2) find nature of Σ u_n    and calaculate it.  3) find nature  of Σ u_n ^2
letun=0sin(nx2)x2+6dx1)calculateunandlimun(n+)2)findnatureofΣunandcalaculateit.3)findnatureofΣun2
Commented by Abdo msup. last updated on 11/Feb/19
1) we have u_n =_(x=(√6)t)  ∫_0 ^∞   ((sin(6nt^2 ))/(6(1+t^2 ))) (√6)dt  =(1/( (√6)))∫_0 ^∞  ((sin(6nt^2 ))/(1+t^2 )) dt ⇒2u_n =(1/( (√6))) ∫_(−∞) ^(+∞)  ((sin(6nt^2 ))/(1+t^2 ))dt  ⇒2(√6)u_n =Im( ∫_(−∞) ^(+∞)  (e^(i6nt^2 ) /(1+t^2 ))dt) let   ϕ(z) =((e^(6inz^2 )   )/(z^2  +1))    the poles of ϕ are i and −i  residus theorem give ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Rez(ϕ,i)  Rez(ϕ,i) =lim_(z→i) (z−i)ϕ(z) =(e^(−6ni) /(2i)) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ (e^(−6ni) /(2i)) =π{cos(6n)−i sin(6n)}⇒  2(√6)u_n =−π sin(6n) ⇒u_n =−(π/(2(√6))) sin(6n)  2) the sequence (u_n ) diverges ⇒Σ u_n  diverges  also  u_n ^2  =(π^2 /(24))sin^2 (6n) diverges ⇒Σ u_n ^2  diverges
1)wehaveun=x=6t0sin(6nt2)6(1+t2)6dt=160sin(6nt2)1+t2dt2un=16+sin(6nt2)1+t2dt26un=Im(+ei6nt21+t2dt)letφ(z)=e6inz2z2+1thepolesofφareiandiresidustheoremgive+φ(z)dz=2iπRez(φ,i)Rez(φ,i)=limzi(zi)φ(z)=e6ni2i+φ(z)dz=2iπe6ni2i=π{cos(6n)isin(6n)}26un=πsin(6n)un=π26sin(6n)2)thesequence(un)divergesΣundivergesalsoun2=π224sin2(6n)divergesΣun2diverges

Leave a Reply

Your email address will not be published. Required fields are marked *